博碩士論文 104624003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.21.97.61
姓名 李羿葦(Yi-Wei Lee)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 不同排水速度/滑移速度條件下高嶺土 之摩擦特性探討
(Relationship of frictional characteristics of kaolin clay in different slip rates and drainage conditions)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大規模山崩常造成生命財產之重大損失,而滑移面摩擦特性受滑移速度、圍岩排水條件和滑移距離等因素影響,因此,瞭解滑移面摩擦特性與上述因素之關聯性有助於山崩防災研究。本研究探討滑移速度和排水條件對高嶺土摩擦係數之影響,試驗試體浸泡於水中一天,使含水量趨近於飽和,以1 MPa之正向應力進行試體壓密,旋剪試驗全程處於浸水環境,於單、雙向與徑向排水條件下以滑移速度10-7~1 m/s,量測高嶺土之視摩擦係數。徑向排水條件結果顯示,當滑移速度10-6~10-2 m/s之試驗於200~10秒和滑移速度1 m/s之試驗於0.4 秒時,視摩擦係數先降至低谷值(0.03~0.22)再漸增,並且低於其他兩排水條件(相同滑移距離)之視摩擦係數(0.25~0.58),故此現象應為激發超額孔隙壓力所引致。當滑移速度10-7~10-1 m/s時,三種排水條件試驗皆呈現位移強化行為;當滑移速度為1 m/s時則皆為位移弱化,且皆出現上述之低谷值。在從10-6到10-2 m/s下,所有實驗之穩態摩擦係數均隨滑移速度上升而上升。計算徑向排水和乾試體條件試驗過程中之溫度變化,於滑移速度1 m/s試驗,徑向排水試驗最終溫度72度,乾試體試驗最終溫度188度,於滑移速度10-1 m/s試驗,實驗最終溫度約56~65度,於滑移速度10-2 m/s試驗,實驗中溫度變化不超過8度。由上述結果與前人研究可以判斷超額孔隙壓力激發機制有:(1)孔隙體積壓縮而激發。(2)溫度上升使孔隙流體膨脹而激發。(3)水汽化而激發。因此,超額孔隙壓力之累積同時與不同排水條件和滑移速度有關,結果指出邊坡滑動面排水條件將影響滑移面是否加速,若邊坡滑動面排水良好,能快速將超額孔隙壓力排出,而滑移面強度將逐漸增強而使滑移趨緩;此外,若超額孔隙壓力生成速度快過消散速度,則可能促成緩慢滑移(潛移)邊坡加速而轉變成遠距快速滑移。
摘要(英) Large landslide usually causes loss of life and property. The slip rate, drainage condition and shear displacement control the frictional characteristics of slip zone. Moreover, the effective stress of slip zone decreases with increasing pore pressure. The strength of slip zone is controlled by the slip rate and pore pressure. To know the relation between the frictional characteristics and previous parameters contribute to research of landslide prevention. This study aims at exploring the influence of slip rates and drainage conditions on the strength of kaolin clay. A low to high velocity rotary shear apparatus was used to measure the apparent friction coefficient of wet kaolin clay under a normal stress of 1 MPa and slip rate ranged from 10-7 to 1 m/s. The drainage conditions are controlled by alloy holders including radial, single and double drainage conditions. The experimental results show: (a) the steady-state friction coefficients at radial drainage condition under slip rates from 10-7 to10-1 m/s (slip-strengthening behavior) ranged from 0.25 to 0.58 and under 1 m/s of slip rate (slip-weakening behavior) is 0.08 and; (b) the steady-state friction coefficients single drainage condition under slip rates from 10-6 to10-1 m/s (slip-strengthening behavior) ranged from 0.30 to 0.4 and under 1 m/s of slip rate (slip-weakening behavior) is 0.18; (c) the steady-state friction coefficients double drainage condition under slip rates from 10-6 to10-1 m/s (slip-strengthening behavior) ranged from 0.18 to 0.58. Besides, the friction coefficient at radial drainage condition under slip rates from 10-6 to10-2 m/s dropped rapidly (before slip displacements < 2 m) after first peak and increased again after the drop, which represents the excess pore pressure was induced and dissipated at the initial stage, especially. Calculate the temperature change during the course of the radial drainage and dry test conditions. At the slip rate of 1 m/s test, the test temperature of the radial drainage test specimen is up to 72 degrees; the test temperature of the dry test specimen is even up to 188 degrees. At the slip rate of 10-1 m/s test, the final temperature of the experiment range from 56 to 65 degrees. At slip rate of 10-2 m/s test, the temperature change in the experiment does not exceed 8 degrees. According to the above results and previous studies can determine the excess pore pressure generation mechanism: (1) Pore volume compression and pore pressure generation. (2) The rise in temperature leads to pore water generation. (3) Water vaporization leads to pore water generation. The results could be applied to the study of large landslide from creeping tuning into catastrophic failure. Therefore, the accumulation of excess pore pressure is related to different drainage conditions and slip rates. It is pointed out that the drainage condition of the sliding surface will affect the acceleration of the sliding surface. If the sliding surface is well drained, which can quickly dissipate excess pore pressure, then the strength of slip surface will increase and the slip will be slowed down. In addition, if the generated rate of excess pore pressure is faster than the dissipated rate of excess pore pressure, it may cause the creep slip to become a rapid slip.
關鍵字(中) ★ 超額孔隙壓力
★ 滑移速度
★ 排水條件
★ 摩擦係數
★ 高嶺土
關鍵字(英) ★ Excess pore pressure
★ Slip rate
★ drainage condition
★ friction coefficient
★ kaolin clay
論文目次
摘要 I
Abstract III
目錄 VI
圖目錄 X
符號表 XVI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究流程 2
第二章 文獻回顧 5
2.1 相關旋∕環剪試驗 5
2.1.1 摩擦係數隨滑移距離變化與相關參數 5
2.1.2 穩態摩擦係數隨滑移速度變化與相關機制 7
2.1.3 旋剪試驗上下圍岩排水性與熱傳導性 10
2.1.4 鐵氟龍環摩擦力校正 12
2.2 孔隙壓力對山崩滑動面材料強度影響 15
2.3 超額孔隙壓力 17
2.3.1 超額孔隙壓力激發 17
2.3.2 超額孔隙壓力消散 18
2.4 現地排水條件 19
2.4.1 深層岩體潛移(Deep-seated rock mass creep) 19
2.4.2 斷層滑移(Fault Slip) 20
第三章 研究方法 22
3.1 試驗樣品-高嶺土 22
3.2 旋剪摩擦試驗 24
3.3 排水條件控制 28
3.3.1 排水圓柱合金設計 28
3.3.2 不同排水條件試驗之排水速度 29
3.4 試體製備 31
3.5 試驗操作流程 33
3.6 鐵氟龍環摩擦力校正 36
3.7 旋剪試驗溫度計算 37
第四章 結果 39
4.1 旋剪試驗前施加正向應力時之排水情形 39
4.2鐵氟龍環摩擦力校正 46
4.3相同排水條件下不同滑移速度之高嶺土試驗結果 53
4.3.1乾試體條件下不同滑移速度之高嶺土試驗結果 54
4.3.2 徑向排水條件下不同滑移速度之高嶺土試驗結果 57
4.3.3單向排水條件下不同滑移速度之高嶺土試驗結果 62
4.3.4雙向排水條件下不同滑移速度之高嶺土試驗結果 65
4.4相同滑移速度不同排水條件下之試驗結果 68
4.5摩擦係數隨滑移距離變化與相關參數 81
4.6不同滑移速度與不同排水條件下之高嶺土穩態摩擦係數 82
4.7旋剪試驗過程溫度計算 85
第五章 討論 89
5.1 摩擦係數曲線於受剪初期產生低谷值再回昇機制 89
5.2超額孔隙壓力激發與消散之過程 90
5.2.1超額孔隙壓力激發機制 90
5.2.2超額孔隙壓力消散 93
5.2.3超額孔隙壓力綜合討論 95
5.3不同排水條件下穩態/低谷值摩擦係數變化 100
5.4不同滑移速度下穩態/低谷值摩擦係數變化 102
5.5試驗結果對研究潛移山崩加速滑移之啟示 105
第六章 結論與建議 108
參考文獻 112
附錄一 118
附錄二 121
附錄三 126
附錄四(所有試驗數據): 128
參考文獻
1. 余威論,「速度-位移相關摩擦係數與巨型山崩運動特性」,國立中央大學應用地質所,碩士論文,2009。
2. 吳文傑,「應力歷史相關之沉積岩孔隙率模型」,國立中央大學應用地質所,碩士論文,2009。
3. 陳文山,台灣地質概論,中華民國地質學會,2016。
4. 林俐玲、黃振全、顏呈仰、黃貞凱、鄭裕適和張益通,「深層岩體潛移邊坡滑動行為研究-以廬山地滑為例」,2009。
5. 許暢軒,「地震誘發遽變式山崩之臨界位移」,國立中央大學應用地質所,碩士論文,2016。
6. 劉學樺,「由斷層泥旋剪試驗推估基底滑脫面於不同深度與滑移速度條件下之摩擦特性」,國立中央大學應用地質所,碩士論文,2013。
7. Alonso, E.E., Zervos, A., Pinyol, N.M., 2016. Thermo-poro-mechanical analysis of landslides: From creeping behavior to catastrophic failure. Geotechnique, 66(3), 202-219.
8. Bar-Sinai, Y., Spatschek, R., Brener, E.A., Bouchbinder, E., 2014. On the velocity-strengthening behavior of dry friction. Journal of Geophysical Research: Solid Earth, 119, 1738-1748.
9. Bhat, D.R., Bhandari, N.P., Yatabe, R., 2013d. Method of residual-state creep test to understand the creeping behaviour of landslide soils. Landslide Science and Practice, 2, 635-642.
10. Boyer, R., Welsh, G., Collings, E.W., 1994. Materials Properties Handbook - Titanium Alloys, ASM International, Materials Park, OH.
11. Brantut, N., Schubnel, A., Rouzaud, J.-N., Brunet, F., Shimamoto, T., 2008. High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research, 113, B10401
12. Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architecture and permeability structure. Geology, 24, 1125-1128.
13. Chen, J., Niemeijer, A., Yao, L., Ma, S., 2017. Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophysical Research Letters, doi: 10.1002/2016GL071932
14. Chigira, M., 1992. Long-term gravitational deformation of rock by mass rock creep. Engineering Geology, 32(3), 157-184.
15. De Blasio, F.V., Elverhøi, A., 2008. A model for frictional melt production beneath large rock avalanches. Journal of Geophysical Research. 113, F02014.
16. De Paola, N., Holdsworth, R.E., Viti, C., Collettini, C., Bullock, R., 2015. Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation? Earth and Planetary Science Letters, 431, 48-58.
17. Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., 2011. Fault lubrication during earthquakes. Nature, 471, 494-497.
18. Ferri, F., Di Toro, G., Hirose, T., Shimamoto, T., 2010. Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges. Terra Nova, 22(5), 347-353.
19. Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Quaresimin, M., de Rossi, N., 2011. Low-to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research, 116, B09208.
20. Fleming, R.W., Johnson, A.M., 1975. Rates of seasonal creep of silty clay soil. Quarterly Journal of Engineering Geology, 8, 1-29.
21. French, M.E., Kitajima, H., Chester, J.S., Chester, F.M., Hirose, T., 2014. Displacement and dynamic weakening processes in smectite-rich gouge from the Central Deforming Zone of the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 119, 1777-1802.
22. Goren, L., Aharonov, E., 2007. Long runout landslides: The role of frictional heating and hydraulic diffusivity. Geophysical Research Letters, 34, L07301.
23. Goren, L., Aharonov, E., 2009. On the stability of landslides: A thermo-poro-elastic approach. Earth and Planetary Science Letters, 277, 365-372.
24. Hirose, T., Shimamoto, T., 2005. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research, 110, B05202.
25. Iverson, R.M., 2000. Landslide triggering by rain infiltration. Journal of Geophysical Research, 110, F02015.
26. Iverson, R.M., 2005. Regulation of landslide motion by dilatancy and pore pressure feedback. Journal of Geophysical Research, 110, F02015.
27. Kreith, F., Manglik, R.M., Bohn, M.S., 1986. Principles of heat transfer. Harper and Row, New York.
28. Kim, J.W., Ree, J.H., Han, R., Shimamoto, T., 2010. Experimental evidence for the simultaneous formation of pseudotachylyte and mylonite in the brittle regime. Geology, 38, 1143-1146
29. Lachenbruch, A.H., 1980. Frictional heating, fluid pressure, and the resistance to fault motion. Journal of Geophysical Research, 85, 6097-6122.
30. Michot, A., Smith, D.S., Degot, S., Gault, C., 2008. Thermal conductivity and specific heat of kaolinite: evolution with thermal treatment, Journal of the European Ceramic Society, 28, 2639-2644.
31. Miyamoto, Y., Shimamoto, T., Togo, T., Dong, J.J., Lee, C.T., 2009. Dynamic weakening of bedding- parallel fault gouge as a possible mechanism for catastrophic Tsaoling landslide induced by 1999 Chi-Chi earthquake. Proceedings of The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, 398-401.
32. Mizoguchi, K., Hirose, T. Shimamoto, T., Fukuyama, E., 2007. Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake. Geophysical Research Letters, 34, L01308.
33. Moore, D.E., Lockner, D.A., 2007. Friction of the smectite clay montmorillonite: A review and interpretation of data, in The Seismogenic Zone of Subduction Thrust Faults. Columbia Univ. Press, New York.
34. Nemcok, A., 1972. Classification of landslides and other mass movements. Rock mechanics, 4(2), 71-78.
35. Niemeijer, A., Di Toro, G., Nielsen, S., Di Felice, F., 2011. Frictional melting of gabbro under extreme experimental conditions of normal stress, acceleration, and sliding velocity. Journal of Geophysical Research: Solid Earth, 116, B07404.
36. Noda, H., Kanagawa, K., Hirose, T., Inoue, A., 2011. Frictional experiments of dolerite at intermediate slip rates with controlled temperature: Rate weakening or temperature weakening? Journal of Geophysical Research, 116, B07306
37. Oohashi, K., Hirose, T., Takahashi, M., Tanikawa, W., 2015. Dynamic weakening of smectite-bearing faults at intermediate velocities: implications for subduction zone earthquakes. Journal of Geophysical Research, 120, 1572-1586.
38. Rice, J.R., 2006. Heating and weakening of faults during earthquake slip. Journal of Geophysical Research, 111, B05311.
39. Richard, A.R. and Bruce, S.H., 1991. Heat capacities of kaolinite from 7 to 380 k and of dmso-intercalated kaolinite from 20 to 310 k. the entropy of kaolinite Al2Si2O5(OH)4. Clays and Clay Minerals, 39(4), 362-368.
40. Sassa, K., Fukuoka, H., Wang, G., Ishikawa, N., 2004. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics. Landslides, 1, 7-19.
41. Sawai, M., Hirose, T., Kameda, J., 2014. Frictional properties of incoming pelagic sediments at the Japan Trench: Implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake. Earth Planets Space, 66(1), 65.
42. Skempton, A.W., Henkel, D.J., 1960. Field observations on pore pressures in the London Clay. Conference on Pore Pressure and Suction in soils. Butterworths, 81-84.
43. Skempton, A.W., 1985. Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique, 35(1), 3-18.
44. Ter-Stepanian, G.I., 1966. Types of depth creep of slopes in rock masses: Proc. 1st Congr. Int. Soc. Rock Mechanics. Lisbon., 2, 157-160.
45. Terzaghi, K., 1925. Erdbaumechnik auf Bodenphysikalischer. Groundlage, Vienna: Franz Deuticke.
46. Tika, T.E., Hutchinson, J.N., 1999. Ring shear tests on soil from the Vaiont landslide slip surface. Geotechnique, 49, 59-74.
47. Togo, T., Ma, S.L., Hirose, T., 2011. High-velocity friction of faults: A review and implication for landslide studies. The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, 205-216.
48. Tsutsumi, A., Shimamoto, T., 1996. Frictional properties of monzodiorite and gabbro during seismogenic fault motion. Journal Geological Society of Japan, 102(3), 240-248.
49. Varnes, D.J., 1978. Slope movement types and processes: In Landslides, Analysis and Control. Nat. Acad. Sci. Spec. Rep., 176, 11-35.
50. Veveakis, E., Vardoulakis, I., Di Toro, G., 2007. Thermoporomechanics of creeping landslides: the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research, 112, F03026.
51. Wada, J.I., Kanagawa, K., Kitajima, H., Takahashi, M., Inoue, A., Hirose, T., Ando, J.I., Noda, H., 2016. Frictional strength of ground dolerite gouge at a wide range of slip rates. Journal of Geophysical Research: Solid Earth, 121, 2961-2979.
52. Wang, F., Zhang, Y., Huo, Z., Peng, X., Wang, S., Yamasaki, S., 2008a. Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges Dam reservoir, China. Landslides, 5 (4), 379-386.
53. Wibberley, C.A.J., Shimamoto, T., 2005. Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436, 689-692.
54. Yang, C.M., Yu, W.L., Dong, J.J., Kuo, C.Y., Shimamoto, T., Lee, C.T., Togo, T., Miyamoto, Y., 2014. Initiation, movement, and run-out of the giant Tsaoling landslide What can we learn from a simple rigid block model and a velocity-displacement dependent friction law? Engineering Geology, 182, 158-181.
55. Yao, L., Ma, S., Platt, J.D., Niemeijer, A.R., Shimamoto, T., 2016. The crucial role of temperature in high-velocity weakening of faults: Experiments on gouge using host blocks with different thermal conductivities. Geology, 44(1), 63-66
56. Zhang, F.Y., Wang, G.H., Kamai, T., Chen, W., Zhang, D., Yang, J., 2013. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution. Engineering Geology, 155, 69-79.
57. Wang, Y.F., Dong, J.J., Cheng, Q.G., 2017. Velocity-dependent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility? Journal of Geophysical Research: Solid Earth, 122, 1648-1676.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2017-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明