博碩士論文 104624004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.206.177.17
姓名 賴柏松(Po-Sung Lai)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 不連續面先天異向性及應力異向性對開挖圍岩滲透特性之影響
(Inherent and stress-induced anisotropy of hydraulic conductivity around a rock tunnel - equivalent continuum approach)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 舉凡山岳隧道工程與放射性廢棄物處置等議題,地下水於壁面圍岩之流動行為及出水量常為工程成敗之關鍵。岩盤隧道開挖過程中,壁面之應力狀態將重新分布進而改變滲透特性,且隧道周圍流場亦將受到滲透特性與開挖面壓力水頭為零之影響,因此本研究探討隧道開挖導致滲透特性與流場之變化。前人研究發現不連續面位態分布會使裂隙岩體水力傳導係數產生先天異向性(inherent anisotropy),同時應力會影響不連續面之開口寬,亦將導致水力傳導係數產生應力引致異向性(stress induced anisotropy),基於此兩者特性及影響,利用隧道開挖過程產生的應力重新分布之影響為例,採用擬連續概念建立之Oda模式,加入了JRC-JCS模式計算隧道壁面附近不連續面開口寬隨正向應力與剪應力改變之水力傳導係數張量,此一水力傳導係數張量為裂隙岩體所受應力狀態影響之函數。成果顯示,隧道開挖應力重新分布造成之應力異向性將造成隧道周圍岩盤最大水力傳導係數主值增加約2個數量級,並造成水力傳導係數之異向性增加,主方向亦有顯著變化,若忽略不連續面剪脹行為,將過份低估隧道周圍岩盤之水力傳導係數;然而邊界(大地)應力異向性對水力傳導係數之影響相對隧道開挖後應力重新分布之影響較小。不連續面先天異向性及邊界應力異向性亦將影響水力傳導係數主方向,且造成隧道側壁與頂拱滲透特性不同。隨著平均岩覆應力增加,隧道開挖後應力重新分布對岩盤水力傳導係數主值之影響降低,且影響範圍亦變小,然而對水力傳導係數主方向之影響較不明顯。隧道周圍流場亦同時受到隧道開挖應力重新分布、不連續面先天異向性以及邊界應力異向性影響,造成隧道頂拱與側壁之滲流量不同,然而不考慮剪脹對於隧道滲流量之影響並不顯著。
摘要(英) The hydraulic conductivity around the tunnel is one of the key parameters for the safety assessment of radioactive waste disposal and mountain tunnel engineering. This study aims to explore the inherent anisotropy (orientation of the discontinuities) and stress induced anisotropy of the hydraulic conductivity around a rock tunnel. JRC-JCS model is used to estimate the aperture of discontinuities under stress, and consider the shear dilatancy effect of discontinuities at the same time. Based on the calculated stress field via Kirsch solution (1898) and the equivalent continuum model, the hydraulic conductivities around a circular tunnel can be calculated. The groundwater inflow of the tunnel is further evaluated via finite difference method. The result shows that the hydraulic conductivity on the tunnel wall is about 1 ~ 2 orders of magnitude larger than the one away from the tunnel (or the one of rock mass under boundary stress). If the shear dilatancy effect does not be considered, the hydraulic conductivity will be underestimate (about 60 times with considering shear dilatancy effect condition) The major principal hydraulic conductivity on the tunnel wall can be 4 ~ 10 times larger than the minor principal value. The principle directions of the hydraulic conductivity near the tunnel wall are also significantly deviated from the tangential and radial directions when the inherent anisotropy is considered. In this study, boundary stress has less influence on hydraulic conductivity around the tunnel than stress redistribution caused by tunnel excavation. With increasing boundary stress the influence of tress redistribution on hydraulic conductivity around the tunnel will decrease. Groundwater flow analysis shows that the total head and the flow velocity are dominated by the inherent and stress induced anisotropy of hydraulic conductivity. Surprisingly, the inflow of the tunnel is insignificantly influenced by the spatial variation of hydraulic conductivity around the tunnel wall.
關鍵字(中) ★ 隧道開挖
★ 應力重新分布
★ 先天異向性
★ 應力異向性
★ 水力傳導係數
★ 流場
★ 滲流量
關鍵字(英)
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xvi
第一章、 前言 1
1.1 研究動機與目的 1
1.2 研究內容與方法 3
第二章、 文獻回顧 5
2.1 裂隙岩體滲流模式 5
2.1.1 離散模式 5
2.1.2 連續模式(Oda擬連續模式) 6
2.2 不連續面方位之密度函數 9
2.3 不連續面體密度 12
2.4 不連續面力學行為 13
2.4.1 Oda模式(以正向閉合為例) 13
2.4.2 JRC-JCS模式 14
2.5 單一不連續面力學-水力內寬轉換 18
2.5.1 力學內寬 19
2.5.2 水力內寬 19
2.5.3 受正向應力下之力學-水力內寬轉換 20
2.5.4 受剪應力下之力學-水力內寬轉換 21
2.6 裂隙岩體水力傳導係數異向性 23
2.7 隧道開挖應力重新分布 25
2.8 隧道開挖周圍岩盤滲透特性變化 26
第三章、 隧道周圍岩盤水力傳導係數之計算 27
3.1 分析條件與參數設定 27
3.1.1 座標系統與隧道開挖模型建立 28
3.1.2 邊界應力狀態 29
3.1.3 不連續面參數設定 30
3.2 隧道開挖前之水力傳導係數 33
3.2.1 均向邊界應力 33
3.2.2 異向邊界應力 34
3.3 隧道開挖應力重新分布對水力傳導係數之影響 35
3.3.1 均向邊界應力 35
3.3.2 均向邊界應力且不考慮剪脹 38
3.3.3 異向邊界應力 40
3.4 先天異向性對隧道開挖水力傳導係數之影響 43
3.4.1 均向邊界應力 43
3.4.2 異向邊界應力 51
3.5 岩覆壓力對滲透特性之影響 56
3.5.1 均向不連續面且均向邊界應力 56
3.5.2 均向不連續面且異向邊界應力 57
3.5.3 異向不連續面且均向邊界應力 60
第四章、 隧道開挖面周圍岩盤流場分析 64
4.1 控制方程式 64
4.2 有限差分法 65
4.2.1 邊界條件設定 69
4.2.2 網格生成 70
4.2.3 求解聯立方程組 72
4.2.4 流速計算 74
4.2.5 隧道入流量計算 74
4.3 程式驗證 75
4.3.1 均質均向水頭驗證 75
4.3.2 均質均向流量驗證 78
4.3.3 異質均向水頭驗證 79
4.3.4 異質均向流量驗證 80
4.3.5 有限差分模型邊界效應 81
4.4 隧道周圍岩盤水力傳導係數異向性與異質性對流場之影響 83
4.4.1 均質均向水力傳導係數 83
4.4.2 均質異向水力傳導係數 85
4.4.3 異質均向水力傳導係數 86
4.5 隧道開挖應力重新分布對水力傳導係數之影響 88
4.5.1 均向邊界應力 88
4.5.2 均向邊界應力且不考慮剪脹 90
4.5.3 異向邊界應力 91
4.6 先天異向性對隧道開挖水力傳導係數之影響 93
4.6.1 均向邊界應力 93
4.6.2 異向邊界應力 97
第五章、 綜合討論 100
5.1 考慮剪脹與否對滲透特性之影響 100
5.1.1 考慮剪脹與否對水力傳導係數主值之影響 100
5.1.2 考慮剪脹與否對水力傳導係數異向性之影響 101
5.1.3 考慮剪脹與否對流場、流速及流量之影響 102
5.2 平均岩覆應力對滲透特性之影響 103
5.2.1 平均岩覆應力對水力傳導係數主值之影響 103
5.2.2 平均岩覆應力對水力傳導係數異向性之影響 103
5.2.3 平均岩覆應力對水力傳導係數主方向之影響 104
5.3 邊界應力異向性對滲透特性之影響 104
5.3.1 邊界應力異向性對水力傳導係數主值之影響 104
5.3.2 邊界應力異向性對水力傳導係數異向性之影響 105
5.3.3 邊界應力異向性對水力傳導係數主方向之影響 105
5.3.4 邊界應力異向性對流場、流速及流量之影響 106
5.4 先天異向性對滲透特性之影響 106
5.4.1 先天異向性對水力傳導係數主值之影響 106
5.4.2 先天異向性對水力傳導係數異向性之影響 106
5.4.3 先天異向性對水力傳導係數主方向之影響 107
5.4.4 先天異向性對流場、流速及流量之影響 107
第六章、 結論與建議 108
6.1 結論 108
6.2 建議 109
參考文獻 111
附錄A 隧道開挖岩盤水力傳導係數計算程式碼 A-1
附錄B 流場分析程式碼 B-1
參考文獻
1. 江誌偉,「裂隙岩體滲流離散模式之研究」,國立台灣大學土木工程學研究所,碩士論文,民國九十七年。
2. 林宏奕,「破裂岩體隧道開挖對水力傳導係數之影響—以雪山隧道為例」,國立成功大學資源工程學研究所,碩士論文,民國九十一年。
3. 張智勇,「軟弱沈積岩岩層滲透異向性之探討」,國立中央大學應用地質研究所,碩士論文,民國九十二年。
4. 黃永鈴,「規則節理岩體滲透模式之研究」,國立台灣大學土木工程學研究所,碩士論文,民國九十二年。
5. 楊卓翰 ,「隧道開挖對節理岩體滲流行為影響之研究」,,國立臺灣大學工學院土木工程學研究所,碩士論文,民國一百零一年。
6. 鄭允嘉,「節理岩體水力傳導係數之先天異向性與應力引致異向性」,國立中央大學應用地質研究所,碩士論文,民國九十五年。
7. Ababou, R., Valera, I.C., Poutrel, A., 2011. Macro-permeability distribution and anisotropy in a 3D fissured and fractured clay rock: ‘Excavation Damaged Zone’ around a cylindrical drift in Callovo-Oxfordian Argilite (Bure). Physics and Chemistry of the Earth, 36, 1932-1948.
8. Bandis, S., Lumsden, A.C., Barton, N.R., 1981. Experimental studies of scale effects on the shear behavior of rock joints. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 18(1), 1-21.
9. Bandis, S.C., Lumsden, A.C., Barton, N.R., 1983. Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 20(6), 249-268.
10. Bandis, S.C., Barton, N.R., Christianson, M., 1985. Application of joint behavior to rock mechanics problems. Proc Int. Symp. On Fundamentals of Rock Joints, Bjorliden.
11. Bossart, P., Meier, P.M., Moeri, A., 2002. Geological and hydraulic characterization of the excavation disturbed zone in the Opalinus clay of the Mont Terri Rock Laboratory. Engineering Geology, 66(1), 19-38.
12. Figueiredo, B., Tsang, C.F., Rutqvist, J., Niemi, A., 2015. A study of changes in deep fractured rock permeability due to coupled hydro-mechanical effects. International Journal of Rock Mechanics and Mining Science, 79, 70-85.
13. Goodman, R.E., 1989. Introduction to Rock Mechanics. Second Edition, 109-111.
14. Huang, Z., Jiang, Z., Zhu, S., Wu, X., Yang, L., Guan, Y., 2016. Influence of structure and water pressure on the hydraulic conductivity of the rock mass around underground excavations. Engineering Geology, 202, 74-84.
15. Ivars, D.M., 2006. Water inflow into excavations in fractured rock—a three-dimensional hydro-mechanical numerical study. International Journal of Rock Mechanics and Mining Sciences, 43(5), 705-725.
16. Jing, L., 2003. A review of techniques advances and outstanding issues in numerical modeling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3), 283-353.
17. Kesall, P.C., Case, J.B., Chabannes, C.R., 1984. Evaluation of excavation-induced changes in rock permeability. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 21(3), 123-135.
18. Knatani, K., 1984. Distribution of directional data and fabric tensors. International Journal of Engineering Science, 22(2), 149-164.
19. Lee, C.H., Deng, B.W., Chang, J.I., 1995. A continuum approach for estimating permeability in naturally fractured rocks. Engineer Geology , 39, 71-85.
20. Lee, C.H., Farmer, I., 1993. Fluid Flow in Discontinuous Rocks.. Chapman and Hall London, 169pp.
21. Long, J.C.S., Remer, J.S., Wilson, C.R., Witherspoon, P.A., 1982. Porous media equivalents for networks of discontinuous fractures. Water Resources Research, 18(3), 645-658.
22. Min, K.B., Jing, L., Stephansson, O., 2004a. Determining the equivalent permeability tensor for fracture rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK. Hydrogeology Journal, 12(5), 497-510.
23. Min, K.B., Rutqvist, J., Tsang, C.F., Jing, L., 2004b. Stress-dependent permeability of fractured rock ,masses: a numerical study. International Journal of Rock Mechanics and Mining Sciences, 41, 1191-1210.
24. Oda, M., 1985. Permeability tensor for discontinuous rock masses. Geotechnique, 35(4), 483-495.
25. Oda, M., 1986. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Research, 22(13), 1845-1856.
26. Oda, M., 1993. Modern developments in rock structure characterization. Compressive Rock Engineering, 1(1), edited by J. A. Hudson. 185-200.
27. Oda, M., Yamabe, T., Ishizuka, Y., Kumasaka, H., Tada, H., Kimura, K., 1993. Elastic stress and strain in jointed rock masses by means of crack tensor analysis. Rock Mechanics and Rock Engineering, 26, 89-112.
28. Olsson R., Barton, N., 2001. An improved model for hydromechanical coupling during shearing of rock joints. International Journal of Rock Mechanics and Mining Sciences, 38, 317-329.
29. Robinson, C.S., Lee, F.T., Scott, J.H., Carroll, R.D., Hurr, R.T., Richards, D.B., Mattei, F.A., Hartmann, B.E., Abel, J.F., 1974. Engineering geologic, geophysical, hydrologic and rock-mechanics investigations of the Straight Creek Tunnel site and pilot bore, Colorado, U.S. Geological Survey., Prof., 815.
30. Rutqvist, J., Borhesson, L., Chijimatsum, M., Hernelind, J., Jing, L., Kobayashi, A., Nguyen, S., 2009. Modeling of damage, permeability changes and pressure responses during excavation of the TSX tunnel in granitic rock at URL, Canada. Environmental Geology, 57(6), 1263-1274.
31. Snow, D.T., 1968. Rock fracture spacings, openings, and porosities. Journal of the Soil Mechanics and Foundations Division. by American Society of Civil Engineers, 96(SM1), 73-91.
32. Sun, J.P., Zhao, Z.Y., 2010. Effects of anisotropic permeability of fractured rock masses on underground oil storage caverns. Tunnelling and Underground Space Technology, 25, 629-637.
33. Wltherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E., 1980 Validity of cubic law for fluid flow in a deformable rock fracture. Water Resources Research, 16(6), 1016-1024.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明