博碩士論文 104624006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.149.252.37
姓名 陳昶宏(Chang-Hung Chen)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 以數值及試驗方法探討非飽和水力特性對非受壓含水層抽水洩降之影響
(Using Numerical and Experimental Methods to Assess the Effect of Unsaturated Hydraulic Characteristics on Drawdown Behavior in Unconfined Aquifer Tests)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 非受壓含水層抽水試驗的影響範圍包含初始非飽和層以及地下水位面下降形成的非飽和層,為探討非飽和層以及材料土壤水分特徵參數在抽水試驗過程中,對非受壓含水層洩降特徵的影響。本研究使用數值模式配合現地與室內試驗方法,嘗試從非受壓含水層洩降資料中,評估非飽和水力特性水力參數對抽水洩降之影響。研究過程中先以FEMWATER地下水模式建立符合抽水試驗場址的三維變飽合地下水模式,參考試驗場址土壤樣本取得的非飽和土壤van Genuchten特徵曲線,進行數值試驗,量化非飽和層水力特性對抽水洩降之影響。之後再以數值模式套配現地非受壓含水層抽水試驗洩降資料。研究結果顯示,本研究所選用的場址,雖然地下水位面接近地表,但是非飽和層中的大時間段洩降特徵極不明顯,現地抽水試驗洩降資料利用Neuman解析法得到的流通係數(transmissivity)T值為0.004 m2/min,儲蓄係數(storage coefficient)S值為0.00058,平均K值為0.001 m/min,從場址地質鑽探資料以及推估出之異向比Kz/Kh中我們推論本研究含水層上部非飽和層對抽水試驗影響甚小,且由於試驗沒有出現大時間洩降特徵因此推估出的Sy皆不在合理範圍。FEMWATER雖成功模擬出非受壓含水層的抽水洩降,從數值試驗中,抽水井開篩段為0~6公尺以及0~8公尺的結果顯示離抽水井越遠抽水井為非全程開篩的影響越小。且非飽和層對非受壓含水層抽水試驗的影響不僅於地下水位面下降所產生之非飽和層,初始非飽和層對其的影響也不可忽略,其影響程度與抽水井距離成正相關。van Genuchten參數敏感度分析的結果顯示,van Genuchten參數中的 值越大,中時間段洩降特徵越明顯; 越小,中時間段洩降越不明顯。而van Genuchten參數中的 值越大,中時間段洩降維持時間越長,越晚進入大時間段特徵;相反地, 值越小,中時間段洩降時間越短,越快進入大時間段特徵。但在與現地資料套疊過程中,擬合效果不佳,尤其是在中時間段重力排水的部分,推估其原因可能是本研究使用的壓力鍋試驗尺寸太小,未明確掌握土壤中礫石材料混合土壤的排水特性。
摘要(英) The influence of pumping test on unconfined aquifer includes the initial unsaturated zone and the unsaturated zone in the cone of depression. To investigate the effects of unsaturated zone on the drawdown behavior in the unconfined aquifer tests, this study uses numerical model, field and laboratory tests to quantify the influence of unsaturated soil parameters on unconfined aquifer tests. The study first employs FEMWATER model to develop the site-specific variable saturated groundwater model. The sampled soil characteristic parameters are obtained based on the van Genuchten soil characteristic model. The parameters are the basis to conduct the sensitivity test for quantifying the influence of the unsaturated zone on the site-specific unconfined pumping test. In the aquifer test, the estimated transmissivity and storage coefficient are 0.004 m2/min and 0.00058 respectively, and the average hydraulic conductivity is 0.001 m/min. According to geological drilling data and anisotropic ratio obtained from pumping test, we concluded that the initial unsaturated zone above the aquifer has little effect on the pumping test. Moreover, the results indicate that the unclear behavior of large time drawdown at the site produces an unreasonable specific yield value. Numerical simulation results show that the drawdown is inversely proportional to the length of well screen, they also show that initial unsaturated zone can not be ignored when pumping in the unconfined aquifer, its influences are positively correlate to the distance from the pumping well. The numerical sensitivity analyses show that the value in van Genuchten model controls the drawdown behavior in the middle time. However, the value in van Genuchten model influences the time elapse of drawdown behavior in the middle time. The FEMWATER model reproduces well the multi-step drawdown behavior in this study. However, the numerical model cannot fit well the field pumping test data, especially the drawdown behavior in the middle time. Such results might be induced by the insufficient information of material with large grain size in the soil sample at the test site.
關鍵字(中) ★ 非受壓含水層
★ 非飽和帶
★ 抽水試驗
★ FEMWATER
★ van Genuchten 土壤水分特徵曲線
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xii
一、 前言 1
1.1 研究動機與目的 1
1.2 研究流程 3
1.3 論文架構 4
二、 文獻回顧 5
2.1 非受壓含水層水井水力學研究 5
2.2 非飽和層對非受壓含水層影響之研究 6
三、 研究區域 11
3.1 區域地質 12
3.2 實驗場址地質鑽探 15
3.3 試驗場址簡介 17
四、 研究方法 18
4.1 Neuman(1975)曲線套疊法 18
4.2 流體在不飽和層中的傳輸行為 21
4.2.1 土壤水分特徵曲線 22
4.2.2 非飽和水力傳導係數 23
4.2.3 非飽和土壤儲蓄效應 23
4.3 壓力鍋試驗 24
4.4 落水頭試驗 27
4.5 FEMWATER數值模式 28
4.5.1 模式理論 28
五、 結果與討論 32
5.1 抽水試驗結果 32
5.2 實驗室試驗結果 40
5.3 FEMWATER模擬結果 44
5.3.1 概念模式 44
5.3.2 基本案例 47
5.3.3 與現地資料作套疊 51
5.3.4 非全程開篩之影響 54
5.3.5 初始非飽和層存在之影響 56
5.3.6 van Genuchten 參數敏感度分析 59
六、 結論與建議 67
6.1 結論 67
6.2 建議 68
參考文獻 69
附錄1 73
附錄2 75
參考文獻
[1] 吳思磊,「整體性含水層特徵描述及參數推估方法」,國立中央大學應用地質研究所,碩士論文,1996
[2] Yeh, T. –C. J, R. Khaleel and K. C. Carroll, “Flow through heterogeneous geologic media”, New York, Cambridge University Press, p267-271, 2015.
[3] Neuman, S. P., “Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response”, Water Resources Research, 11(2), 329-342, 1975.
[4] Boulton, N. S., “Unsteady radial flow to a pumped well allowing for delayed yield from storage”, International Association of Scientific Hydrology, 2: 472-477, 1954.
[5] Boulton, N. S., “Analysis of data from nonequilibrium pumping tests allowing for delayed yield from storage”, Proceedings Institution of Civil Engineering, 26: 469-482, 1963.
[6] Dagan, G., “Method of determining permeability and effective porosity of unconfined anisotropic aquifers” Water Resources Research, 3(4), 1059-1071, 1967.
[7] Neuman, S. P., “Theory of flow in unconfined aquifers considering delayed gravity response of the water table”, Water Resources Research, 8(4), 1031-1045, 1972.
[8] Streltsova, T. D., “Unconfined aquifer and slow drainage”, Journal of Hydrology, 16, 117-123, 1972.
[9] Streltsova, T. D., “Unsteady radial flow in an unconfined aquifer”, Water Resources Research, 8(4), 1972.
[10] Moench, A. F., “Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer”, Groundwater, 33(3), 378-384, 1995.
[11] Moench, A. F., “Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer”, Water Resources Research, 33(6), 1397-1407, 1997.
[12] Nwankwor, G. I., J. A. Cherry, and R. W. Gillham., “A comparative study of specific yield determinations for a shallow sand aquifer”, Groundwater, 22, 764-772, 1984.
[13] Endres, A. L., J. P. Jones, and E. A. Bertrand, “Pumping-induced vadose zone drainage and storage in an unconfined aquifer: A comparison of analytical model predictions and field measurements”, Hydrology, 335, 207-218, 2007.
[14] Nwankwor, G. I., R. W. Gillham, G. van der Kamp, and F. F. Akindunni, “Unsaturated and saturated flow in response to pumping of an unconfined aquifer: Field evidence of delayed drainage”, Groundwater, 30(5), 690-700, 1992.
[15] Akindunni, F. F. and R. W. Gillham, “Unsaturated and saturated flow in response to pumping of an unconfined aquifer: Numerical investigation of delayed drainage”, Groundwater, 30(6), 1992.
[16] Narasimhan, T. N., and M. Zhu, “Transient flow of water to a well in an unconfined aquifer”, Water Resources Research, 29(1), 179-191, 1993.
[17] Gardner, W. R., “Some steady-state solutions of unsaturated moisture flow equations with application to evaporation from a water table”, Soil Science, 85, 228-232, 1958.
[18] Brooks, R. H. and A. T. Corey, “Hydraulic properties of porous media”, Hydrology, 3, 1964.
[19] Van Genuchten, M. Th., “A closed-form solution for predicting the conductivity of hydraulic properties of unsaturated soils”, Soil Science Society of America Journal, 44, 892-898, 1980.
[20] 單信瑜,張良正,「非水相液體於非飽和地層中傳輸行為之特性」,2002地球系統科學研討會,國立中央大學,桃園市,2002年。
[21] Mao, D., L. Wan, T. -C. J. Yeh, C. H. Lee, K. C. Hsu, J. C. Wen, and W. Lu, “A revisit of drawdown behavior during pumping in unconfined aquifers”, Water Resources Research, 47, 2011.
[22] 塗明寬、邵屏華,中壢[臺灣地質圖幅及說明書1/50,000],經濟部中央地質調查所,新北市,民國90年。
[23] 何春蓀,台灣地質概論-台灣地質圖說明書,經濟部中央地質調查所,民國64年。
[24] 牧山鶴彥、濱本勝己,中壢圖幅說明書,臺灣總督府殖產局,民國23年。
[25] 牧山鶴彥、濱本勝己,中壢,臺灣總督府殖產局,民國24年。
[26] Van Genuchten, M. Th., F. J. Leij, and S. R. Yates, “The RECT Code for Quantifying the Hydraulic Functions of Unsaturated Soils”, E.P.A., 1991.
[27] Todd, D. K., L. W. Mays, Groundwater Hydrology, Third Edition, John Wiley & Sons, Inc., New York, 2005.
[28] 林立偉,「非水相液體於土壤中滲流之研究」,國立交通大學,碩士論文,2005。
[29] 潘國樑,工程地質通論,第二版,五南圖書出版有限公司,台北市,民國102年。
[30] Lin, Hsin-Chi. J., D. R. Richards and C. A. Talbot, “FEMWATER : A Three-Dimensional Finite Element Computer Model for Simulating Density-Dependent Flow and Transport in Variably Saturated Media”, 1997.
[31] Tartakovsky, G. D., S. P. Neuman, “Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer”, Water Resources Research, 43, 2007
指導教授 倪春發 審核日期 2017-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明