博碩士論文 104624007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:34.239.176.198
姓名 江思燕(Ssu-Yen Chiang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 考慮尺度延散多物種溶質傳輸解析解模式
(Analytical model for multispecies transport with scale-dependent dispersion)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-7-31以後開放)
摘要(中) 求解系列一階序列降解反應耦合移流-延散方程組所得的多物種傳輸解析解模式為同時決定如放射性核種、溶解的含氯有機化合物、農藥及氨氮衰減性污染物的母物種及子物種污染團移動不可或缺的且有效的工具。儘管前人提出一些多物種傳輸解析解模式,這些文獻可獲得之多物種傳輸解析解模式大部分是考慮常係數延散係數推導而得。近幾十年來,許多研究指出延散度會隨著溶質傳輸移動距離而隨之增加,延散度隨溶質傳輸距離而增加主要由孔隙介質中的水力特性變化造成,文獻中目前並無考慮尺度延散之多物種傳輸解析解模式。本研究發展一個考慮尺度延散的多物種傳輸解析解模式。此解析解模式應用 Laplace轉換消除時間項及廣義型積分轉換消除二階空間微分項求解,發展的解析解模式將和使用Laplace轉換有限差分之數值解模式比較確認解的正確性。結果指出,解析解與數值解兩者非常吻合。最後再將考慮尺度延散之解析解模式與已發表之常係數延散度解析解模式作比較以釐清尺度延散係數對多物種傳輸的影響。結果顯示,當延散主導傳輸行為或考慮衰變常數時,前人所提出尺度延散之解析解模式與常係數延散解析解模式之間的傳輸參數的關係式是無效的。
摘要(英) It is essential to develop multispecies transport analytical models based on a set of advection-dispersion equations (ADEs) coupled with sequential first-order decay reactions for the synchronous prediction of plume migrations of both parent and daughter species of decaying contaminants such as radionuclides, dissolved chlorinated organic compounds, pesticides and nitrogen. Although several multispecies transport analytical models have already been reported, those currently available have primarily been derived based on ADEs with constant dispersion coefficients. Over the past three or four decades, however, there have been a number of studies demonstrating that the dispersion coefficients are scale-dependent. In other words, the dispersion coefficient increases with the solute travel distance as a consequence of variation in the hydraulic properties of the porous media. To the best of our knowledge, multispecies transport analytical models associated with distance-dependent coefficients have not been discussed in the published literature. This study presents a novel multispecies transport analytical model with a distance-dependent dispersion coefficient. The analytical model is developed using the Laplace transform with respect to time and the generalized integral transform technique with respect to the spatial coordinate.The correctness of the derived analytical solutions is confirmed by comparing them against the numerical solutions obtained using the Laplace transform finite difference (LTFD) technique. Results show perfect agreement between the analytical and numerical solutions. Comparison of our new distance-dependent dispersion multispecies transport analytical model to an analytical model with constant dispersion is made to illustrate the effects of the dispersion coefficients on the multispecies transport of decaying contaminants. Results show that the relationship of the transport parameters between the scale-dependent dispersivity model (SDM) and constant dispersivity model (CDM) is not valid when the dispersion process dominates the transport, or when the decay constants are considered.
關鍵字(中) ★ 多物種傳輸
★ 尺度延散
★ 解析解
★ Laplace轉換
★ 廣義型積分轉換
關鍵字(英) ★ Multispecies
★ Scale-dependent dispersion
★ Analytical solution
★ Laplace transform
★ Generalized integral transform
論文目次 摘要 i
ABSTRACT ii
致謝 iv
TABLE OF CONTENTS vi
LIST OF FIGURES vii
LIST OF TABLES viii
NOTATION ix
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Literature Review 3
1-3 Objectives 7
Chapter 2 Development of Analytical Model 8
2-1 Governing equations 8
2-2 Derivation of analytical solutions 13
Chapter 3 Results and Discussion 22
3-1 Convergence behavior of the derived solution 24
3-2 Comparison of analytical solutions with numerical solutions 33
3-3 Temporal evolution of multispecies concentration distribution associated with distance-dependent dispersion 36
3-4 Effect of scale-dependent dispersion on multispecies transport 39
Chapter 4 Conclusions and Suggestions for Future Research 45
REFERENCES 46
APPENDIX 49
In this appendix, we elaborate on the mathematical procedures for deriving the analytical solutions. 49
參考文獻
[1] J. S. Chen et al., “A Laplace transformed power series solution for solute transport in a convergent flow field with scale-dependent dispersion”, Water Resources Research, 39(8), doi: 10.1029/2003WR002299, 2003.
[2] J. S. Chen et al., “Analysis of solute transport in a divergent flow tracer test with scale-dependent dispersion”, Hydrological Processes, 21(18), 2526–2536, 2007.
[3] J. S. Chen et al., “Analytical power series solution for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity”, Journal of Hydrological, 362, 142–149, 2008a.
[4] J. S. Chen et al., “Analytical power series solutions to the two dimensional advection–dispersion equation with distance-dependent dispersivities”, Hydrological Processes, 22(24), 4670–4678, 2008b.
[5] J. S. Chen and C. W. Liu, “Generalized analytical solution for advection–dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition”, Hydrology and Earth System Sciences, 15, 2471–2479, 2011.
[6] J. S. Pérez Guerrero and T. H. Skaggs, “Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients”, Journal of Hydrological, 390, 57–65, 2010.
[7] G. Gao et al., “A new mobile-immobile model for reactive solute transport with scale-dependent dispersion”, Water Resources Research, 46, doi: 10. 1029/2009WR008707, 2010.
[8] J. S. Pérez Guerrero et al., “Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions”, Chemical Engineering Journal, 221, 487–491, 2013.
[9] C. M. Cho, “Convective transport of ammonium with nitrification in soil”, Canadian Journal of Soil Science, 51, 339–350, 1971.
[10] M. T. van Gunuchten, “Convective–dispersive transport of solutes involved in sequential first-order decay reactions”, Computers & Geosciences, 11, 129–147, 1985.
[11] Y. Sun et al., “A new analytical solution for multiple species reactive transport in multiple dimensions”, Journal of Contaminant Hydrology, 35, 429–440, 1999a.
[12] Y. Sun et al., “Development of analytical solutions for multi-species transport with serial and parallel reactions”, Water Resources Research, 35, 185–190, 1999b.
[13] Y. Sun and T. P. Clement, “A decomposition method for solving coupled multi-species reactive transport problems”, Transport in Porous Media, 37, 327–346, 1999.
[14] T. P. Clement, “Generalized solution to multispecies transport equations coupled with a first-order reaction-network”, Water Resources Research, 37, 157–163, 2001.
[15] C. R. Quezada et al., “Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors”, Advances in water resources, 27, 507–520, 2004.
[16] J. S. Chen et al., “A novel method for analytically solving multi-species advective-dispersive transport equations sequentially coupled with first-order decay reactions”, Journal of Hydrological, 420–421, 191–204, 2012a.
[17] J. S. Chen et al., “Generalized analytical solutions to sequentially coupled multi-species advectivedispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition”, Journal of Hydrological, 456–457, 101–109, 2012b.
[18] J. S. Chen et al., “An analytical model for simulating two-dimensional multispecies plume migration”, Hydrology and Earth System Sciences, 20, 733–753, 2016.
[19] J. F. Pickens and G. E. Grisak “Scale‐dependent dispersion in a stratified granular aquifer”, Water Resources Research, 17(4), 1191–1211, 1981a.
[20] L. W. Gelhar, Stochastic Subsurface Hydrology, Prentice Hall College, New York, 1992.
[21] L. Pang, and B. Hunt, “Solutions and verification of a scale-dependent dispersion model”, Journal of Contaminant Hydrology, 53, 21–39, 2001.
[22] J. F. Pickens and G. E. Grisak “Modeling of scale‐dependent dispersion in hydrogeologic systems”, Water Resources Research, 17(6), 1701–1711, 1981b.
[23] B. Hunt, “Contaminant source solutions with scale-dependent dispersivity”, Journal of Hydrological Engineering, 3(4), 268–275, 1998.
[24] R. M. Cotta, Integral Transforms in Computational Heat and Fluid Flow, CRC Press, Boca Raton, FL, 1993.
[25] V. S. Arpaci, Conduction Heat Transfer, Addison-Wesley, USA, 1966.
[26] T. M. McGuire et al., “Historical analysis of monitored natural attenuation: A survey of 191 chlorinated solvent sites and 45 solvent plumes”, Remediation Journal, 15, 99–122, 2004.
[27] C. E. Aziz et al., BIOCHLOR–Natural attenuation decision support system v1.0, User’s Manual, US EPA Report, EPA 600/R-00/008, 2000.
[28] B. Hunt, “Scale-dependent dispersion from a pit”, Journal of Hydrological Engineering, 7(2), 168–174, 2002.
指導教授 陳瑞昇 審核日期 2017-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明