博碩士論文 104624009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.235.25.169
姓名 馮嵩棣(Song-Di Fong)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 裂隙網路迴流效應對流場及溶質傳輸之影響
(The effect of local flow on flow and contaminant transport in discrete fracture networks)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前對於封閉裂隙(dead-end fracture)並無詳細的研究與解析,尤其在二維離散模式中,通常將封閉裂隙視為無導水能力的區域,而在模式生成離散裂隙網路階段時被去除、忽略;然而,在三維離散模式下卻顯示出重要的局部迴流效應(local flow effect),發生迴流效應之封閉裂隙可稱為迴流單元(local flow cell),此迴流效性亦直接影響污染團在裂隙網路的傳輸機制。為瞭解迴流效應對離散裂裂隙網路中流場與保守性污染物傳輸的機制,本研究以雙片裂隙,建構多種裂隙位態組合,以裂隙網路數值模式探討迴流效應對於流場以及溶質傳輸之影響。本研究首先使用商用模式HYDRUS 3D,模擬一組正交裂隙網路下的裂隙岩體,分析母岩與裂隙交互作用下的影響,探討在何種母岩孔隙率及水力傳導係數下可忽略母岩影響。依據分析成果,進一步使用離散裂隙模式模擬不同裂隙位態組合下,流場及傳輸行為受封閉裂隙的影響。模擬結果顯示,背景水力梯度方向與裂隙交線之間的夾角為非正交時,封閉裂隙可提供局部流場而引致迴流效應發生,背景水力梯度方向與裂隙交線之間的夾角越小時,封閉裂隙中的迴流效應越大。愈大的迴流效應,將使得污染團更容易流入封閉裂隙中,造成傳輸過程較明顯的遲滯現象,污染團也因封閉裂隙造成的迴流效應而產生較大的污染團團塊變形及空間分佈偏移。
摘要(英) The dead-end fractures in discrete fracture networks (DFNs) play an important role in the analysis of flow and contaminant transport. In two-dimensional DFN cases, the dead-end fractures have usually been considered as no-flow zones and have been removed at the stage of constructing a DFN. Such simplification is not valid for three-dimensional DFNs. The local flow effect induced by dead-end fractures can considerably influence the flow and transport mechanism in the three-dimensional fracture networks. The study developed a full three-dimensional DFN model to assess the effect of dead-end fracture on flow and conservative solute transport in relatively simple DFNs. The testing scenarios included different fracture orientations intersected by two fracture plates. This study also employed the HYDRUS model to quantify the influence of matrix porosity and hydraulic conductivity on flow and contaminant transport. The results from HYDRUS provided indications for neglecting the influence of rock matrix. The results from the developed DFN model showed that the dead-end fractures can lead to local flow when the angle between the background hydraulic gradient and the fracture intersection is non-orthogonal. The smaller the angle the stronger the local flow in the dead-end fractures. Additionally, the local flows in dead-end fractures can trap contaminant plume and enhance retardation behavior in the solute transport procedure.
關鍵字(中) ★ 封閉裂隙
★ 離散裂隙網路
★ 迴流效應
★ HYDRUS 3D
★ 裂隙交線
★ 遲滯
關鍵字(英) ★ dead-end fracture
★ discrete fracture networks
★ local flow effect
★ HYDRUS 3D
★ fracture intersection
★ retardation
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
圖片目錄 vi
表格目錄 x
一. 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 2
1.4 研究流程 2
1.5 論文架構 3
二. 文獻回顧 5
2.1 連續模式(continuum approach) 5
2.1.1 代表性體積(REV) 6
2.1.2 雙孔隙率模式 6
2.1.3 三連續模式 7
2.2 離散模式(discrete approach) 8
2.3 裂隙與母岩交互作用 10
2.4 裂隙交接處(fracture intersection) 12
三. 理論與方法 17
3.1 主流向與裂隙交線夾角概念說明 17
3.2 HYDRUS 3D 18
3.2.1 控制方程式 18
3.2.2 HYDRUS 3D模形建立與網格生成 22
3.3 離散裂隙網路模式 22
3.3.1 控制方程式 22
3.3.2 裂隙幾何結構以及網格生成 23
3.3.3 裂隙方位逆轉流程(BRP) 24
3.3.4 有限元素法求解水流與溶質傳輸 25
3.4 初始條件設定 25
3.5 邊界條件設定 26
四. 模擬結果 28
4.1 HYDRUS 3D概念模型(conceptual model) 28
4.1.1 HYDRUS 3D三維十字正交雙裂隙平板模型 31
4.1.2 HYDRUS 3D單一裂隙平板模型 38
4.1.2.1 推估母岩孔隙率影響差異 38
4.1.2.2 推估裂隙與母岩水力傳導係數數量及差異 40
4.2 DFN概念模型 42
4.2.1 地下水穩態流場模擬結果 44
4.2.2 溶質傳輸模擬結果 53
五. 結論與建議 66
5.1 結論 66
5.2 建議 68
參考文獻 69
附錄A 75
A.1. HYDRUS3D模型建立中文使用手冊 75
參考文獻


[1] Pettersson, S., and Widing, E., “Development of the Swedish deep repository for spent nuclear fuel in crystalline host rock”, Swedish nuclear fuel and waste management company (SKB), 2003.
[2] Thegerström, C., “Deep Geological Disposal of Nuclear Waste in the Swedish Crystalline Bedrock”, Swedish nuclear fuel and waste management company (SKB), 2010.
[3] Hartley, L., and Joyce, S., “Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden”, Journal of Hydrology, Vol. 500, pp. 200-216, 2013.
[4] Dessirier, B., Frampton, A., Jarsjö, J., “A global sensitivity analysis of two-phase flow between fractured crystalline rock and bentonite with application to spent nuclear fuel disposal”, Journal of Contaminant Hydrology, Vol. 182, pp. 25-35, 2015.
[5] Thegerström, C., “Deep geological disposal of nuclear waste in the Swedish crystalline bedrock”, Swedish nuclear fuel and waste management company (SKB), 2010.
[6] Zafarani, A., and Detwiler, R. L., “An efficient time-domain approach for simulating Pe-depedent transport through fracture intersections”, Advances in Water Resources, Vol. 53, pp. 198-207, 2013.
[7] Ji, S. H., and Koh, Y. K., “Appropriate domain size for groundwater flow modeling with a discrete fracture network model”, Groundwater, Vol. 55, pp. 51-62, 2017.
[8] Singhal, B. B. S., and Gupta, R. P., “Applied hydrogeology of fractured rocks”, 2nd edn, Springer Science & Business Media, New York, pp. 13-33, 2010.
[9] Barenblatt, G. I., Zheltov, I. P., and Kochina, I. N., “Basic concepts in the theory of seepage of homogenous liquids in fissured rocks”, Journal of Applied Mathematics and Mechanics, Vol. 24, pp. 852-864, 1960.
[10] Bogdanov, I. I., Mourzenko, V. V., and Thovert, J. F., “Effective permeability of fractured porous media in steady state flow”, Water Resources Research, Vol. 39, WR000756, 2003.
[11] Hartley, L., and Roberts, D., “Summary of discrete fracture network modeling as applied to hydrogeology of Forsmark and Laxmar sites”, Swedish nuclear fuel and waste management company (SKB), R-12-04, 2012.
[12] Mustapha, H., and Mustapha, K., “A new approach to simulating flow in discrete fracture networks with an optimized mesh”, Society for Industrial and Applied Mathematics, Vol. 29, pp. 1439-1459, 2007.
[13] Erhel, J., Dreuzy, J. R. D., and Poirriez, B., “Flow simulation in three-dimensional discrete fracture networks”, Society for Industrial and Applied Mathematics, Vol. 31, pp. 2688-2705, 2009.
[14] 李奕賢,「三維離散裂隙網路水流與溶質傳輸模式發展」,國立中央大學應用地質學系,博士論文,2016。
[15] Makedonska, N., Painter, S. L., Bui, Q. M., Gable, C. W., and Karra, S., “Particle tracking approach for a transport in three-dimensional discrete fracture networks”, Computational Geosciences, Vol. 19, pp. 1123-1137, 2015.
[16] Park, Y. J., Lee, and K. K., “Transport behavior in three-dimensional fracture intersections”, Water Resources Research, Vol. 39, NO. 8, 2003.
[17] Long, J. C. S., Remer, J. S., Wilson, C. R., and Witherspoon, P. A., “Porous media equivalents for networks of discontinuous fractures”, Water Resources Research, Vol. 18, pp. 645-658, 1982.
[18] Vujevic, K., Graf, T., Simmons, C. T., and Werner, A. D., “Impact of fracture network geometry on free convective flow patterns”, Advances in Water Resources, Vol. 71, pp. 65-80, 2014.
[19] Lipson, D. S., Kueper, B. H., and Gefell, M. J., “Matrix diffusion-derived plume attenuation in fractured bedrock”, Ground Water, Vol. 43, pp. 30-39, 2005.
[20] Grisak, G. E., and Pickens, J. F., “Solute transport through fractured media: 1. The effect of matrix diffusion”, Water Resources Research, Vol. 16, pp. 719-730, 1980.
[21] Grisak, G. E., and Pickens, J. F., “Contaminant transport through fractured geologic media”, Canadian Water Resources Journal, Vol. 9, pp.108-116, 1984.
[22] Sena, C., Salas, J., and Arcos, D., “Aspects of geochemical evolution of the SKB near field in the frame of SR-Site”, Swedish nuclear fuel and waste management company (SKB), TR-10-59, 2010.
[23] Bear, J., and Braester, C., “On the flow of two immscidle fluids in fractured porous media”, Developments in Soil Science, Vol. 2, pp. 177-202, 1972.
[24] Warren, J. E., and Root, P. J., “The behavior of naturally fractured reservoirs”, Society of Petroleum Engineers, doi: 10.2118/426-PA, 1963.
[25] Wu, Y. S., Liu, H. H., and Bodvarsson, G. S., “A triple-continuum approach for modeling flow and transport processes in fractured rock”, Journal of Contaminant Hydrology, Vol. 73, pp. 145-179, 2004.
[26] Alahmadi, H. A., “A triple-porosity model for fractured horizontal wells”, Texas A&M university, master thesis, 2010.
[27] Wu, Y. S., Di, Y., Kang, Z., and Fakcharoenphol, P., “A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs”, Journal of Petroleum Science and Engineering, Vol. 78, pp. 13-22, 2011.
[28] Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B., “Scaling of fracture systems in geological media”, Reviews of Geophysics, Vol, 39, pp. 347-383, 2001.
[29] 吳宛庭,「三維裂隙網路升尺度方法推估等效參數之差異評估」,國立中央大學應用地質學系,碩士論文,2016。
[30] 李禎常,「破裂岩體地下水與污染物平均傳輸統計分佈性質之研究」,國立成功大學資源工程學系,碩士論文,2004。
[31] Smith, L., and Schwartz, F. W., “An analysis of the influence of fracture geometry on mass transport in fracture media”, Water Resources Research, Vol. 20, pp. 1241-1252, 1984.
[32] Frampton, A., and Cvetkovic, V., “Upscaling particle transport in discrete fracture networks: 1. Nonreactive tracers”, Water Resources Research, Vol. 43, W10428, 2007.
[33] Long, J. C. S., Gilmour, P., and Witherspoon, P. A., “A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures”, Water Resources Research, Vol. 21, pp. 1105-1115, 1985.
[34] Neretnieks, I., “Diffusion in the rock matrix: An important factor in radionuclide retardation”, Journal of Geophysical Research, Vol.85, pp. 4379-7397, 1980.
[35] Wu, Y. S., Ye, M., and Sudicky, E. A., “Fracture-flow –enhanced matrix diffusion in solute transport through fractured porous media”, Transport in Porous Media, doi: 10.1007/s11242-009-9383-4, 2010.
[36] Zhou, Q., Liu, H. H., Molz, F. J., Zhang, Y., and Bodvarsson, G. S, “Field-scale effective matrix diffusion coefficient for fractured rock: Results from literature survey”, Journal of Contaminant Hydrology, Vol. 93, pp. 161-187, 2007.
[37] Wilson, C. R., and Witherspoon, P. A., “Flow interference effects at fracture intersections”, Water Resources Research, Vol. 12, pp. 102-104, 1976.
[38] Hull, L. C., and Koslow, K. N., “Streamline routing through fracture junctions”, Water Resources Research, Vol. 22, pp. 1731-1734, 1986.
[39] Park, Y. J., and Lee, K. K., “Analytical solutions for solute transfer characteristics at continuous fracture junctions”, Water Resources Research, Vol. 35, pp. 1531-1537, 1999.
[40] Šimůnek, J., van Genuchten, M. T., and Šejna, M., “The HYDRUS Software Package for Simulating Two- and Three Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Porous Media, Technical Manual, Version 2.0”, PC Progress, Prague, Czech Republic,2012.
[41] Pruess, K., and Tsang, Y. W., “On two-phase relative permeability and capillary pressure of rough-walled rock fractures”, Water Resources Research, Vol. 26, pp. 1915-1926, 1990.
[42] Lee, I. H., and Ni. C. F., “Fracture-based modeling of complex flow and CO2 migration in three-dimensional fractured rocks”, Computers and Geosciences, Vol. 81, pp. 64-77, 2015.
[43] WIKIPEDIA, “Normal distribution”, https://en.wikipedia.org/wiki/Normal_distribution.
[44] Šimůnek, J., van Genuchten, M. T., and Šejna, M., “The HYDRUS Software Package for Simulating Two- and Three Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Porous Media, User Manual, Version 2.04”, PC Progress, Prague, Czech Republic, 2014.
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明