博碩士論文 104624602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:52.87.176.39
姓名 寧古蘭(Lamtupa Nainggolan)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用迴歸克利金法評估濁水溪流域地下水位與補注的時空交互作用
(Implementation of Regression Kriging method to assess spatial-temporal interactions between groundwater levels and recharge in Choushui River Basin)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了保護地下水資源,地下水位分佈的資訊極為重要。然而,濁水溪流域內地下水水位站的稀疏分佈卻限制了對於該區地下水位時空分佈的瞭解。本研究利用2006年至2015年間的地下水位月觀測資料,並結合普通克利金法(Ordinary Kriging, OK)和回歸克利金法(Regression Kriging, RK)以改善濁水溪流域地下水位的插值結果。為了瞭解降雨對地下水位的影響,RK所插值而得的地下水位將用於評估流域內地下水位與降雨間的時空交互作用,OK則僅使用於地下水位數據的插值。研究中共採用了31個地下水位站和12個雨量站觀測資料,高程和降雨量則利用RK合併為地下水位的附加變量。降雨數據由雨量站和CHIRPS觀測資料所組合而成,高程資料則由SRTM所提供。線性迴歸結果的相關係數(r)顯示,地下水位的觀測變動量中,有97%以上可以用地表高程數據來解釋,該結果表示高程數據可以作為雨量計數據的附加變量。然而由於多重線性問題,迴歸後的降雨資料不能與地下水位高程資料結合使用。相關係數、RMSE與NMSE的結果亦顯示,RK在時空上擁有比OK更強的預測能力,特別是地下水位極值的預測。空間上而言,雨季(5月和8月)地下水位升高,而地下水位擾動的最低值發生在乾季(3月和4月),多數出現於濁水溪流域的下游西部地區。此外,濕季地下水補給量與地下水水位的相關性亦相對高於乾季。濁水溪流域的地下水補給總量平均約1.40億立方公尺,為3.77億立方公尺,約為降雨量的37 % 上下。綜合上述,地下水資源的管理應集中在地下水補給率最高的濁水溪流域上游地區。
摘要(英) The sparse distribution of groundwater stations in Choushui River Basin limits spatial-temporal of groundwater level information in these region while this information was crucial needed to know for groundwater conservation purposes. This study reports on an effort to improve the interpolation of monthly groundwater level from groundwater stations using Ordinary Kriging (OK) and Regression Kriging (RK), spanning the period from 2006 to 2015. In order to know the effort precipitation to the groundwater level, the interpolation groundwater level of RK has used to assess spatial-temporal interactions between groundwater levels and recharge in Choushui River Basin. Therefore, a total of 31 groundwater stations and 12 rain gauges data have employed in this research. Basically, OK was done using groundwater level data only. Then, RK was tried to merge the elevation and precipitation as the additional variables for groundwater level. Precipitation data derived by combination rain gauge data and monthly rainfall of Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). For elevation data, it was provided by Shuttle Radar Topographic Mission (SRTM). The correlation coefficient (r) of linear regression model proved that more than 97 % of the variability in groundwater levels observations can be explained by elevation data. It shows that elevation data can be included as an additional variables of rain gauges data. Conversely, precipitation data in regression model cannot be used in combination with elevation for groundwater levels due to multi-collinearity problem. The correlation coefficient (r), RMSE and NMSE reveals that RK has more robust prediction skill than OK in space and time, especially for prediction an extreme of groundwater level. Spatially, groundwater level elevated during wet months (May and August). The lowest level of groundwater level fluctuation was found to be from last of dry months (March & April), especially in the downstream west part of Choushui River Basin. Furthermore, groundwater recharge has derived and the correlation of groundwater recharge to groundwater level during the wet months was relatively higher than the dry months. Averagely, total amount of groundwater recharge at Choushui River Basin is about 1.40 billion m3 which represents 37 % of 3.77 billion m3 precipitation. As conclusion, the management of groundwater resource should be focused on the upstream area of the Choushui River Basin which has the highest groundwater recharge rate.
關鍵字(中) ★ 普通克利金法
★ 迴歸克利金法
★ 地下水水位
★ 降雨
★ 濁水溪
關鍵字(英) ★ OK
★ RK
★ Groundwater level
★ Precipitation
★ Choushui River
論文目次 Abstract i
摘要 ii
Acknowledgements iii
List of Table viii
Table of Symbols ix

1. INTRODUCTION 1
1.1 Background and motivation 1
1.2 Research objective 2
1.3 Structure of Thesis 3

2. LITERATURE REVIEW 4
2.1. Groundwater recharge 4
2.2. Kriging Interpolation 5
2.2.1. Ordinary Kriging (OK) 6
2.2.2. Regression Kriging (RK) 8
2.3. The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 10
2.4. Elevation data 10

3. METHODOLOGY 12
3.1 Study area 12
3.2 Software Used 13
3.3 Data 13
3.3.1 Groundwater level 13
3.3.2 Precipitation data 13
3.3.4 Elevation data 15
3.3.5 Land use data 15
3.3.6 Soil type data 17
3.3.7 Evapotranspiration 18
3.3. Methods 19
3.3.1. Preprocessing Data 21
3.3.2. Linear regression analysis 23
3.3.3. Interpolation method 24
3.3.4. Assessment Criteria 25
3.3.5. Groundwater recharge 27
3.3.6. Spatial distribution and temporal of groundwater level 29

4. RESULTS AND DISCUSSIONS 30
4.1 Results 30
4.1.1 Evaluation of CHIRPS satellite 30
4.1.2 Modified Precipitation (MoP) 33
4.1.2. Linear Regression Analysis 36
4.1.3. Ordinary Kriging (OK) 42
4.1.4. Regression Kriging (RK) 45
4.1.5 Comparison analysis: Ordinary Kriging (OK) and Regression Kriging (RK) 49
4.1.6. Groundwater recharge 52
4.1.7 Spatial and temporal analysis of Groundwater level 60
4.2. Discussions 64
4.2.1 Can Regression Kriging (RK) be used on combination of groundwater level, elevation and precipitation data for mapping the groundwater level in Choushui River Basin, Taiwan? 64
4.2.2 Does Regression Kriging (RK) produce more accurate results than Ordinary Kriging (OK) for mapping the monthly average of the groundwater level in Choushui River Basin, Taiwan? 65
4.2.3 Is there any relationship between groundwater level to precipitation, elevation and groundwater recharge in Choushui River Basin, Taiwan? 66
4.2.4 What is the spatial and temporal distribution of groundwater level at Choushui River Basin based on interpolate map? 68

5. CONCLUSIONS AND RECOMMENDATIONS 69
5.1. Conclusions 69
5.2. Recommendations 70

REFERENCES 72
APPENDIX 1: Variogram of Groundwater Level 75
APPENDIX 2: Variogram of Residual Groundwater Level 90
APPENDIX 3: Linear regression analysis between GWL and Elevation 105
APPENDIX 4: Linear regression analysis between GWL and Precipitation 109
APPENDIX 5: Prediction map of groundwater level by OK 113
APPENDIX 6: Prediction map of groundwater level by RK 124
APPENDIX 7: Standard deviation map of groundwater level by OK 134
APPENDIX 8: Standard deviation map of groundwater level by RK 144


參考文獻 ABDULLAHI M.G., GARBA, L., 2015. Effect of Rainfall on Groundwater Level Fluctuation in Terengganu, Malaysia. Journal Remote Sensing and GIS 2015 4:2, DOI: 10.4172/2469-4134.1000142

ABDULLAHI, M.G., GASIM, M., JUAHIR, H., (2014). Determination of Groundwater Level Based on Rainfall Distribution: Using Integrated Modeling Techniques in Terengganu, Malaysia. Journal of Geology and Geoscience 4:187. doi:10.4172/2329-6755.1000187

AS-SYAKUR, A., TANAKA, T., PRASETIA, R., SWARDIKA, K. & KASA, I. 2011. Comparison of TRMM multi-satellite precipitation analysis (TMPA) products and daily-monthly gauge data over Bali. International Journal of Remote Sensing, 32, 8969-8982.

BISSON, R.A., LEHR, J.H., (20040. Modern Groundwater Exploration: Discovering New Water Resources in Consolidated Rocks Using Innovative Hydrogeological Concepts, Exploration, Drilling, Aquifer Testing and Management Methods. John Wiley & Sons, Inc., ISBN: 978-0-471-06460-2.

BOHLING, G. 2005. Introduction to Geostatistic and Variogram Analysis. Available: http://people.ku.edu/~gbohling/cpe940.

BURROUGH, P. A. & MCDONNEL, R. A. 1998. Principles of geographical information systems, Oxford University Press.

CAMPBELL, M. J. & GARDNER, M. J. 1988. Statistics in Medicine - Calculating Confidence-Intervals for Some Non-Parametric Analyses. British Medical Journal, 296, 1454-1456.

CHAMBERS, J. M. & HASTIE, T. J. 1992. Statistical Models in S, Wadsworth & Brooks/Cole.

EPA, 2017. https://www.epa.gov/sites/production/files/documents/groundwater.pdf [Accessed March 31th 2017].

ESRI. 2012. ArcGIS Desktop 9.3 Help [Online]. Available: http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=welcome [Accessed March 14th 2012].

FEIDAS, H. 2010. Validation of satellite groundwater level products over Greece. Theoretical and Applied Climatology, 99, 193 - 216.

GARDNER, P.M., HEILWEIL, M. 2009. Evaluation of the Effects of Precipitation on Ground-Water Levels from Wells in Selected Alluvial Aquifers in Utah and Arizona, 1936-2005. Scientific Investigations Report 2008-5242. https://pubs.usgs.gov/sir/2008/5242/

GOOVAERTS, P. 1997. Applied Geostatistic for Natural Resources Evaluation, New York, Oxford University Press, Inc.

GOOVAERTS, P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of groundwater level. Journal of Hydrology, 228, 113-129.

503

HENGL, T. 2009. A Practical Guide to Geostatistical Mapping. 2nd ed. Amsterdam: University of Amsterdam.

HENGL, T., HEUVELINK, G. B. M. & ROSSITER, D. G. 2007. About regression-kriging: From equations to case studies. Computers & Geosciences, 33, 1301-1315.

HONG, Y., ADLER, R.F., (2008). Estimation of global SCS curve numbers using satellite remote sensing and geospatial data. Journal International Journal of Remote Sensing, 2, 2,471-477. https://doi.org/10.1080/01431160701264292

ISAAKS, E. H. & SRIVASTAVA, R. M. 1989. Applied Geostatistic, New York, , Oxford University Press.

KAO, Y.H., LIU, C.H., WANG, S.H., LEE, C.H., (2012). Estimating mountain block recharge to downstream alluvial aquifers from standard methods. Journal of Hydrology. 426–427, 93-102. https://doi.org/10.1016/j.jhydrol.2012.01.016.

KARL, J. W. 2010. Spatial Predictions of Cover Attributes of Rangeland Ecosystems Using Regression Kriging and Remote Sensing. Rangeland Ecology & Management, 63, 335-349.

LI, J. & HEAP, D. 2008. A Review of Spatial Interpolation Methods for Environmental Scientists.

LIU, R. CHEN, Y. SUN, C. ZHANG, P. WANG, J. Yu, W. SHEN, Z. (2014) Uncertainty analysis of total phosphorus spatial-temporal variations in the Yangtze River Estuary using different interpolation methods. Mar Pollut Bull 86:68–75. doi:10.1016/j.marpolbul.2014.07.041

LIU, C.H., NI, C.F., CHANG, C.P., YEN, J.Y., HUNG, W.C. (2015) Combination with precise leveling and PSInSAR observations to quantify pumping-induced land subsidence in central Taiwan. Proceedings. IAHS, 372, 77-82, 2015.

MAJANI, B. S. 2007. Analysis of External Drift Kriging Algorithm with application to precipitation estimation in complex orography. Master of Geo-information Sciences, International Institute for Geo-information Science and Earth Observation.

MONKHOUSE, F. 1959. Principles of Physical Geography, London, University of London Press Ltd.

MOSCA, S., GRAZIANI, G., KLUG, W., BELLASIO, R. & BIANCONI, B. 1998. A statistical methodology for the evaluation of long-range dispersion models: an application to the exercise. Atmospheric Environment, 32, 4307- 4324.

PAL, B., SAMANTA, S., (2014). Surface runoff estimation and mapping using Remote Sensing and Geographic Information System. International Journal of Advances in Science and Technology, Vol. 3, No. 3, 2011.

SASAKI, H. AND KURIHARA, K. 2008. Relationship between Precipitation and Elevation in the Present Climate Reproduced by the Non-hydrostatic Regional Climate Model. SOLA, 2008, Vol. 4, 109‒112, doi:10.2151/sola.2008‒028

SINGH, P. & KUMAR, N. 1997. Effect of orography on precipitation in the western Himalayan region. Journal of Hydrology, 199, 183-206.

SHUI-HUI LIN. 2010. Groundwater level Spatial Interpolation Using Hypersurface Regression Kriging. Master Thesis. Master of Applied Geology, Graduate Institute of Earth Science, National Central University.

SPLASHMAN. 2011. Types of groundwater level [Online]. Available: http://splashman.phoenix.wikispaces.net/file/view/types_groundwater level.gif/203391180/types_groundwater level.gif [Accessed March 13th 2012].

STATSOFT. 2012. Multiple Regression [Online]. Available: http://www.statsoft.com/textbook/multiple-regression/ [Accessed March 13th 2012].

THOMAS, B.F.; BEHRANGI, A.; FAMIGLIETTI, J.S. 2016. Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States. Water 2016, 8, 90.

THOMPSON, JC. MOORE, RD. 1996. Relations between topography and water table depth in a shallow forest soil. Hydrological Processes, PROCESSES, VOL. 10, 1513-1525 (1996) DOI: 10.1002/(SICI)1099-1085(199611)10:11<1513::AID-HYP398>3.0.CO;2-V.

WRA. http://eng.wra.gov.tw/ct.asp?xItem=48254&CtNode=9667 {Accessed by 24 February 2017]

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf {Accessed by 18 December 2017]

http://www.statisticssolutions.com/multicollinearity/ {Accessed by 20 December 2017]

http://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/performing-cross-validation-and-validation.htm {Accessed by 28 December 2017]

https://water.usgs.gov/edu/watercyclerecharge.html {Accessed by 29 December 2017]

https://yceo.yale.edu/modis-land-cover-product-mcd12q1 {Accessed by 31 December 2017]


指導教授 倪春發(Chuen-Fa Ni) 審核日期 2018-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明