博碩士論文 104624605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:18.119.131.178
姓名 歐司瓦(Oswald R. Sitanggang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 應用多時域雷達干涉技術於於台灣屏東平原沿海區域測量抽水引致地層下陷
(Implementation of Multi-Temporal InSAR to assess pumping induced land subsidence near the coastal line of Pingtung Plain, Taiwan)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於台灣西南部的農業與養殖漁業而言,屏東平原的地下水資源極為重要。由於對於地下水資源的過度依賴,長期超抽地下水被認為是沿海低海拔地區地面沉降的主要原因。傳統地層下陷測量依靠GPS和水準測量數據為主,但是這些技術耗時費力、價格昂貴且測量點有限。為了減輕地層下陷所造成的災害,本研究結合多時域InSAR技術、連續散射體和小基線InSAR技術以監測地下水抽取引起的地面沉陷。本研究中將利用StaMPS / MTI(Stanford Method for Persistent Scatterer / Multi-temporal),結合25張由2004年至2009年的ENVISAT ASAR衛星圖像與NASA SRTM所測得的20公尺數值高程模型(DEM)以消除地形造成的效應。研究結果顯示相對於2004-2010年的平均沉陷數據-21至-28公分/年,多時域InSAR測量的沉陷速率為-20至-29公分/年。 MT-InSAR與水準測量數據之間的相關性為R2值0.69,結合PS-InSAR和SB-InSAR將可獲得更佳的地表變形監測結果。
摘要(英) Pingtung Plain is imperative groundwater assets territories in southwestern Taiwan due to the creating of farming and aquaculture. The utilizations of groundwater have expanded essentially. Long-term over-extraction of groundwater are suspected to play a dominant role in land subsidence where the elevation along the coastal area is lower than seawater level. Traditional measurements of land subsidence rely on GPS and leveling data. However, those techniques are time-consuming, high-priced and limitation on geodetic points. In terms of natural hazard mitigation, this study uses Multi-temporal InSAR combining Persistent Scatterer and Small Baseline InSAR techniques to monitor land subsidence due to groundwater pumping. 25 ENVISAT ASAR images satellite were acquired from 2004-2009, to obtain the surface deformation by utilizing StaMPS/MTI (Stanford Method for Persistent Scatterer/Multi-temporal) program and utilizes the 20 meter of Digital Elevation Model (DEM) from NASA’S Shuttle Radar Topography Mission (SRTM) to completely remove the topographic issue. The subsidence rate measured with multi-temporal InSAR is -20 mm/years to -29 mm/year corresponds to leveling data is from 2004-2010 is -21 mm/years to -28 mm/years. Correlation between MT-InSAR and leveling data shows a higher correlation with R-squared value is 0.69. Combining PS-InSAR and SB-InSAR can optimize the detection of surface deformation.
關鍵字(中) ★ 地層下陷
★ 多時相InSAR
★ 地下水
關鍵字(英) ★ Land subsidence
★ Multi-temporal InSAR
★ Groundwater
論文目次 List of Contents
摘要 i
Abstract ii
Acknowledgments iii
List of Contents iv
List of Figure vi
Chapter 1. Introduction 1
1.1. Background and Motivation for the study 1
1.2. Objective 4
Chapter 2. Literature Review 5
2.1. Land subsidence due to groundwater pumping 5
2.2. Interferometry synthetic aperture radar 7
2.2.1. InSAR Decorrelation problem 8
Chapter 3. Methodology 10
3.1 Description of study area 10
3.2. Data source 12
3.1.1. ENVISAT ASAR satellite 12
3.1.2. Leveling Data 13
3.1.3. Groundwater level data 14
3.3. Methodology 15
3.3.1. Multi-Temporal InSAR 15
Chapter 4. Results & Discussion 18
4.1. Multi-temporal InSAR 18
4.2. Comparison Multi-temporal InSAR with leveling data 21
4.3. Groundwater Observation 35
Chapter 5. Conclusion & Suggestions 36
Reference 37
Appendix 41
StaMPS/MTI parameters 44
PS Processing 44
Small Baseline Processing 50

參考文獻 Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., & Deguchi, T. (2011). Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59(3), 1753.
Bürgmann, R., Rosen, P. A., & Fielding, E. J. (2000). Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Annual Review of Earth and Planetary Sciences, 28(1), 169-209. doi:10.1146/annurev.earth.28.1.169
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383. doi:10.1109/TGRS.2002.803792
Chang, C., Chang, T., Wang, C., Kuo, C., & Chen, K. (2004). Land-surface deformation corresponding to seasonal ground-water fluctuation, determining by SAR interferometry in the SW Taiwan. Mathematics and Computers in Simulation, 67(4), 351-359.
Chaussard, E., Amelung, F., Abidin, H., & Hong, S.-H. (2013). Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128, 150-161. doi:http://dx.doi.org/10.1016/j.rse.2012.10.015
Colesanti, C., Ferretti, A., Prati, C., & Rocca, F. (2003). Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology, 68(1), 3-14. doi:https://doi.org/10.1016/S0013-7952(02)00195-3
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. doi:10.1109/36.898661
Galloway, D. L., & Burbey, T. J. (2011). Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459-1486. doi:10.1007/s10040-011-0775-5
Galloway, D. L., Hudnut, K. W., Ingebritsen, S. E., Phillips, S. P., Peltzer, G., Rogez, F., & Rosen, P. A. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research, 34(10), 2573-2585. doi:10.1029/98WR01285
Gambolati, G., Teatini, P., & Ferronato, M. (2005). Anthropogenic land subsidence. Encyclopedia of Hydrological Sciences.
Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16), n/a-n/a. doi:10.1029/2008GL034654
Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514–517, 1-13. doi:http://dx.doi.org/10.1016/j.tecto.2011.10.013
Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7), n/a-n/a. doi:10.1029/2006JB004763
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), n/a-n/a. doi:10.1029/2004GL021737
Hou, C.-S., Hu, J.-C., Shen, L.-C., Wang, J.-S., Chen, C.-L., Lai, T.-C., . . . Angelier, J. (2005). Estimation of subsidence using GPS measurements, and related hazard: the Pingtung Plain, southwestern Taiwan. Comptes Rendus Geoscience, 337(13), 1184-1193. doi:http://dx.doi.org/10.1016/j.crte.2005.05.012
Hsieh, C.-S., Shih, T.-Y., Hu, J.-C., Tung, H., Huang, M.-H., & Angelier, J. (2011). Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan. Natural Hazards, 58(3), 1311-1332. doi:10.1007/s11069-011-9734-7
Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., & Ma, K.-W. (2007). Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeology Journal, 15(5), 903-913. doi:10.1007/s10040-006-0137-x
Hu, J.-C., Chu, H.-T., Hou, C.-S., Lai, T.-H., Chen, R.-F., & Nien, P.-F. (2006). The contribution to tectonic subsidence by groundwater abstraction in the Pingtung area, southwestern Taiwan as determined by GPS measurements. Quaternary International, 147(1), 62-69.
Lu, C.-H., Ni, C.-F., Chang, C.-P., Chen, Y.-A., & Yen, J.-Y. (2016). Geostatistical Data Fusion of Multiple Type Observations to Improve Land Subsidence Monitoring Resolution in the Choushui River Fluvial Plain, Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 27(4).
Lubis, A. M., Sato, T., Tomiyama, N., Isezaki, N., & Yamanokuchi, T. (2011). Ground subsidence in Semarang-Indonesia investigated by ALOS–PALSAR satellite SAR interferometry. Journal of Asian Earth Sciences, 40(5), 1079-1088. doi:https://doi.org/10.1016/j.jseaes.2010.12.001
Massonnet, D., Feigl, K., Rossi, M., & Adragna, F. (1994). Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature, 369(6477), 227-230.
Ng, A. H.-M., Ge, L., Li, X., Abidin, H. Z., Andreas, H., & Zhang, K. (2012). Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. International Journal of Applied Earth Observation and Geoinformation, 18, 232-242. doi:http://dx.doi.org/10.1016/j.jag.2012.01.018
Phien-wej, N., Giao, P. H., & Nutalaya, P. (2006). Land subsidence in Bangkok, Thailand. Engineering Geology, 82(4), 187-201. doi:https://doi.org/10.1016/j.enggeo.2005.10.004
Richard, B., & Philipp, H. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14(4), R1.
Tung, H., & Hu, J.-C. (2012). Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126-135. doi:https://doi.org/10.1016/j.tecto.2012.08.009
Tu, Y.S., Tsai, H.T & Ting, C.S. (2009). The evaluation of groundwater environmental restoration by artificial recharge in Pingtung Plain, Taiwan. IAHS Publ 330, 1-8
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2018-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明