博碩士論文 104626008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.80.85.76
姓名 胡順凱(Shun-Kai Hu)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 發展移動固體法並用於山崩海嘯過程與海嘯石運動之研究
(Developing a Moving Solid Algorithm to Study the Generation of Landslide Tsunamis and the Movement of Tsunami Boulders)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 海岸樹林及消波結構物對海嘯能量消散之模擬
★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬★ 裙礁流場之數值分析與消能特性之探討
★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
★ 蘭嶼海嘯石與1867年基隆海嘯之動力分析★ 山崩誘發之海嘯之數值研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-8-31以後開放)
摘要(中) 2017年6月,格陵蘭島西岸之卡拉特峽灣(Karrat Fjord)發生山崩海嘯事件,估計體積約4500萬立方公尺之山崩滑落,引發之海嘯侵襲南方之Nuugaatsiaq漁村,造成結構物破壞以及數人死亡。相較於海底地震引發之海嘯,山崩海嘯具有較強烈之垂直擾動,且往往伴隨劇烈之碎波,必須以三維數值方法獲得更精確之模擬。

  台灣為較易受海嘯攻擊之海島,亦有十數筆歷史海嘯以及古海嘯紀錄(Wu, 2013),然而海嘯石為研究古海嘯之重要地質線索,由海嘯石最終所停留之位置,有機會一窺當時海嘯來臨時之波高與流速,並釐清動力來源,如海嘯或颱風巨浪。此外,台灣屏東九鵬已發現三顆海嘯石(Matta et al., 2013),透過分析其動力機制,有機會還原古海嘯之情境。

  然而,山崩海嘯與海嘯石之運動皆關係到雙相流流體力學與固體力學之耦合,為此,本研究開發嶄新之剛性流體法(Rigid-Fluid Method, RFM),求解三維不可壓縮流之Navier-Stokes方程式,以流體體積法(VOF)搭配PLIC法描述自由液面,並應用離散元素法(DEM),透過收集網格中之壓力及剪力,計算固體之移動及旋轉。本文使用RFM法,對半圓球山崩海嘯實驗、格陵蘭山崩海嘯以及九鵬海嘯石,進行一系列之模擬以及分析,獲得非常準確之驗證,以及符合文獻描述之模擬結果。

  本研究結果顯示,半圓球山崩之側向流速將逐漸增大,且塊體浸沒深度達2.5倍半圓球直徑後,已難影響上層之流場。將模擬之尺度放大後,模擬結果之參數皆符合福祿數相似時之倍數關係。格陵蘭山崩模擬之溯上高度可達90公尺,符合Nature News報導之數據。在1:5坡度條件下,海嘯石搬運之條件為至少1.5倍直徑波高之湧潮,以及至少 √2gh 之流速。
摘要(英) In June, 2017, a landslide-tsunami event took place at Karrat fjord, locating at the west coast of Greenland. The volume of the landslide is approximately 45 million cubic meter. As the result, the tsunami brought destructions and several casualties to a fishing village at Nuugaatsiaq. In order to investigate further physical properties of this event, we must not ignore the high nonlinearity of breaking waves induced by great vertical vibration. Therefore, a 3D numerical analysis is taken to obtain accurately reproduce the scenario.

  Rigid-Fluid Method (RFM), which solves the Navier-Stokes equation for three-dimensional incompressible flow, is developed to calculate the movement and rotation of a moving solid. With the data of the pressure and shear stress in each grid collected by Discrete Element Method (DEM), the moving solid is granted to be involved in the simulation; while the free surface is reconstructed by Piecewise Linear Interface Calculation (PLIC).

  A series of simulations and analyses of the Greenland Tsunami, the Jiu Peng tsunami boulders, and a hemisphere landslide tsunami experiment have been performed. The numerical results, which concur with the literature records, indicate the correctness of this method even a moving solid is included.
關鍵字(中) ★ 移動固體法
★ 剛性流體法
★ 流固耦合
★ 流體體積法
★ 山崩海嘯
★ 2017年格陵蘭山崩海嘯
★ 九鵬
★ 海嘯石
關鍵字(英) ★ Moving Solid Algorithm
★ RFM
★ Fluid-Structure Interaction
★ VOF
★ Landslide Tsunami
★ 2017 Greenland Tsunami
★ Jiu Peng
★ Tsunami Boulders
論文目次 論文指導教授推薦書 iii
論文口試委員審定書 iv
摘要 v
Abstract vii
誌謝 viii
目錄 x
圖目錄 xiii
表目錄 xvii
第一章 緒論 1
1-1 研究動機 1
1-2 研究方法 4
1-3 本文架構 6
第二章 文獻回顧 8
2-1 山崩海嘯文獻回顧 8
2-2 海嘯石文獻回顧 12
2-3 流固耦合方法回顧 15
2-4 移動固體法開發演進 17
第三章 模式介紹與數值方法 19
3-1 控制方程式(Governing Equation) 20
3-2 流體體積法與PLIC法(Piecewise Linear Interface Construction) 22
3-3 有限體積法(Finite Volume Method, FVM) 25
3-4 部分網格法(Partial Cell Treatment, PCT) 27
3-5 大渦模擬法(Large Eddy Simulation, LES) 28
3-6 卵形顆粒描述法(Egg-Shaped Particles Description) 31
3-7 離散元素法(Discrete Element Method, DEM) 35
3-8 投影法(Projection Method) 37
3-9 RFM法(Rigid-Fluid Method) 39
第四章 模式驗證 42
4-1 卡門渦街案例數值設置 43
4-2 卡門渦街案例模擬結果 45
4-3 圓球入水案例實驗及數值設置 51
4-4 圓球入水案例模擬結果 54
第五章 山崩海嘯案例之模擬結果與分析 73
5-1 半圓球山崩案例之實驗與模擬設置 76
5-2 半圓球山崩案例模擬結果 80
5-3 大尺度之半圓球山崩案例模擬 111
5-4 2017格陵蘭山崩海嘯案例模擬設置 123
5-5 格陵蘭山崩海嘯案例模擬結果 129
第六章 九鵬海嘯石案例之模擬結果與討論 163
6-1 九鵬海嘯石案例之模擬設置 166
6-2 九鵬海嘯石案例模擬結果 168
第七章 結論與建議 182
7-1 模式驗證 182
7-2 山崩海嘯案例之模擬結論 183
7-3 九鵬海嘯石案例之模擬結論 184
7-4 建議 184
參考文獻 185
論文口試書面答覆表 194
參考文獻 [1] Al-Faesly, T., Nistor, I., Palermo, D., & Cornett, A. (2011). Simulated tsunami bore impact on an onshore structure. In 20th Canadian Hydrotechnical Conference (pp. 14-17).
[2] Aristoff, J. M., Truscott, T. T., Techet, A. H., & Bush, J. W. (2010). The water entry of decelerating spheres. Physics of fluids, 22(3), 032102.
[3] Cabot, W., & Moin, P. (2000). Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow, Turbulence and Combustion, 63(1-4), 269-291.
[4] Camfield, F. E. (1980). Tsunami Engineering (No. CERC-SR-6). COASTAL ENGINEERING RESEARCH CENTER VICKSBURG MS.
[5] Chao, W. A., Wu, T. R., Ma, K. F., Kuo, Y. T., Wu, Y. M., Zhao, L., ... & Tsai, Y. L. (2018). The Large Greenland Landslide of 2017: Was a Tsunami Warning Possible?. Seismological Research Letters.
[6] Choowong, M., Murakoshi, N., Hisada, K. I., Charusiri, P., Charoentitirat, T., Chutakositkanon, V., ... & Phantuwongraj, S. (2008). 2004 Indian Ocean tsunami inflow and outflow at Phuket, Thailand. Marine Geology, 248(3-4), 179-192.
[7] Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(2), 453-480.
[8] De Girolamo, P., Wu, T. R., Liu, P. L. F., Panizzo, A., Bellotti, G., & Di Risio, M. (2007). Numerical simulation of three dimensional tsunamis water waves generated by landslides: Comparison between physical model results, VOF and SPH. In Coastal Engineering 2006: (In 5 Volumes) (pp. 1516-1528).
[9] De Rosis, A. (2014). A lattice Boltzmann model for multiphase flows interacting with deformable bodies. Advances in water resources, 73, 55-64.
[10] Didier, E., Neves, D. R. C. B., Martins, R., & Neves, M. G. (2014). Wave interaction with a vertical wall: SPH numerical and experimental modeling. Ocean Engineering, 88, 330-341.
[11] Ding, W. T., & Xu, W. J. (2018). Study on the multiphase fluid-solid interaction in granular materials based on an LBM-DEM coupled method. Powder Technology, 335, 301-314.
[12] Erfanian, M. R., Anbarsooz, M., Rahimi, N., Zare, M., & Moghiman, M. (2015). Numerical and experimental investigation of a three dimensional spherical-nose projectile water entry problem. Ocean Engineering, 104, 397-404.
[13] Francis, P. (1993). Volcanoes: a planetary perspective. Clarendon.
[14] Fritz, H. M., Mohammed, F., & Yoo, J. (2009). Lituya Bay landslide impact generated mega-tsunami 50 th Anniversary. In Tsunami Science Four Years after the 2004 Indian Ocean Tsunami (pp. 153-175). Birkhauser Basel.
[15] Gauthier, D., Anderson, S. A., Fritz, H. M., & Giachetti, T. (2018). Karrat Fjord (Greenland) tsunamigenic landslide of 17 June 2017: initial 3D observations. Landslides, 15(2), 327-332.
[16] Gong, K., Liu, H., & Wang, B. L. (2009). Water entry of a wedge based on SPH model with an improved boundary treatment. Journal of Hydrodynamics, 21(6), 750-757.
[17] Goto, K., Chavanich, S. A., Imamura, F., Kunthasap, P., Matsui, T., Minoura, K., ... & Yanagisawa, H. (2007). Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Sedimentary Geology, 202(4), 821-837.
[18] Goto, K., Okada, K., & Imamura, F. (2010). Numerical analysis of boulder transport by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Marine Geology, 268(1-4), 97-105.
[19] Goto, K., Sugawara, D., Ikema, S., & Miyagi, T. (2012). Sedimentary processes associated with sand and boulder deposits formed by the 2011 Tohoku-oki tsunami at Sabusawa Island, Japan. Sedimentary Geology, 282, 188-198.
[20] Grilli, S. T., & Watts, P. (1999). Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Engineering Analysis with boundary elements, 23(8), 645-656.
[21] Grilli, S. T., Vogelmann, S., & Watts, P. (2002). Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 26(4), 301-313.
[22] Grilli, S. T., & Watts, P. (2005). Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses. Journal of waterway, port, coastal, and ocean engineering, 131(6), 283-297.
[23] Gsell, S., Bonometti, T., & Astruc, D. (2016). A coupled volume-of-fluid/immersed-boundary method for the study of propagating waves over complex-shaped bottom: Application to the solitary wave. Computers & Fluids, 131, 56-65.
[24] Heinrich, P. (1991). Nonlinear numerical model of landslide-generated water waves. Int. J. Eng. Fluid Mech., 4(4), 403-416.
[25] Heinrich, P., Mangeney, A., Guibourg, S., Roche, R., Boudon, G., & Cheminee, J. L. (1998). Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles. Geophysical Research Letters, 25(19), 3697-3700.
[26] Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.
[27] Hu, H. H. (1996). Direct simulation of flows of solid-liquid mixtures. International Journal of Multiphase Flow, 22(2), 335-352.
[28] Imamura, F., Goto, K., & Ohkubo, S. (2008). A numerical model for the transport of a boulder by tsunami. Journal of Geophysical Research: Oceans, 113(C1).
[29] Kai, G. O. N. G., Hua, L. I. U., & WANG, B. L. (2009). Water entry of a wedge based on SPH model with an improved boundary treatment. Journal of Hydrodynamics, Ser. B, 21(6), 750-757.
[30] Kleypas, J. A., McManus, J. W., & Menez, L. A. (1999). Environmental limits to coral reef development: where do we draw the line?. American Zoologist, 39(1), 146-159.
[31] Kolmogorov, A. N. (1991). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. A, 434(1890), 9-13.
[32] Kothe, D., Rider, W., Mosso, S., Brock, J., & Hochstein, J. (1996, January). Volume tracking of interfaces having surface tension in two and three dimensions. In 34th Aerospace Sciences Meeting and Exhibit (p. 859).
[33] Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. In Advances in geophysics (Vol. 18, pp. 237-248). Elsevier.
[34] Liao, C. C., Chang, Y. W., Lin, C. A., & McDonough, J. M. (2010). Simulating flows with moving rigid boundary using immersed-boundary method. Computers & Fluids, 39(1), 152-167.
[35] Lin, P., & Li, C. W. (2003). Wave–current interaction with a vertical square cylinder. Ocean Engineering, 30(7), 855-876.
[36] Liu, P. F., Wu, T. R., Raichlen, F., Synolakis, C. E., & Borrero, J. C. (2005). Runup and rundown generated by three-dimensional sliding masses. Journal of fluid Mechanics, 536, 107-144.
[37] Matta, N., Ota, Y., Chen, W. S., Nishikawa, Y., Ando, M., & Chung, L. H. (2013). Finding of Probable Tsunami Boulders on Jiupeng Coast in Southeastern Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 24(1).
[38] Miller, D. J. (1960). The Alaska earthquake of July 10, 1958: giant wave in Lituya Bay. Bulletin of the Seismological Society of America, 50(2), 253-266.
[39] Monaghan, J. J. (1994). Simulating free surface flows with SPH. Journal of computational physics, 110(2), 399-406.
[40] Moore, A., Nishimura, Y., Gelfenbaum, G., Kamataki, T., & Triyono, R. (2006). Sedimentary deposits of the 26 December 2004 tsunami on the northwest coast of Aceh, Indonesia. Earth, Planets and Space, 58(2), 253-258.
[41] Nakamura, M., Arashiro, Y., & Shiga, S. (2014). Numerical simulations to account for boulder movements on Lanyu Island, Taiwan: tsunami or storm?. Earth, Planets and Space, 66(1), 128.
[42] Nandasena, N. A. K., Paris, R., & Tanaka, N. (2011). Numerical assessment of boulder transport by the 2004 Indian ocean tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). Computers & geosciences, 37(9), 1391-1399.
[43] Nandasena, N. A. K., Paris, R., & Tanaka, N. (2011). Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Marine Geology, 281(1-4), 70-84.
[44] Nandasena, N. A. K., Tanaka, N., Sasaki, Y., & Osada, M. (2013). Boulder transport by the 2011 Great East Japan tsunami: Comprehensive field observations and whither model predictions?. Marine Geology, 346, 292-309.
[45] Nott, J. (1997). Extremely high-energy wave deposits inside the Great Barrier Reef, Australia: determining the cause—tsunami or tropical cyclone. Marine Geology, 141(1-4), 193-207.
[46] Nott, J. (2003). Waves, coastal boulder deposits and the importance of the pre-transport setting. Earth and Planetary Science Letters, 210(1-2), 269-276.
[47] Ota, Y., Shyu, J. B. H., Wang, C. C., Lee, H. C., Chung, L. H., & Shen, C. C. (2015). Coral boulders along the coast of the Lanyu Island, offshore southeastern Taiwan, as potential paleotsunami records. Journal of Asian Earth Sciences, 114, 588-600.
[48] Paris, R., Fournier, J., Poizot, E., Etienne, S., Morin, J., Lavigne, F., & Wassmer, P. (2010). Boulder and fine sediment transport and deposition by the 2004 tsunami in Lhok Nga (western Banda Aceh, Sumatra, Indonesia): a coupled offshore–onshore model. Marine Geology, 268(1-4), 43-54.
[49] Rider, W. J., & Kothe, D. B. (1998). Reconstructing volume tracking. Journal of computational physics, 141(2), 112-152.
[50] Scheffers, A., & Kelletat, D. (2003). Sedimentologic and geomorphologic tsunami imprints worldwide—a review. Earth-Science Reviews, 63(1-2), 83-92.
[51] Schwaiger, H. F., & Higman, B. (2007). Lagrangian hydrocode simulations of the 1958 Lituya Bay tsunamigenic rockslide. Geochemistry, Geophysics, Geosystems, 8(7).
[52] Shu, C., Chew, Y. T., & Niu, X. D. (2001). Least-squares-based lattice Boltzmann method: a meshless approach for simulation of flows with complex geometry. Physical Review E, 64(4), 045701.
[53] Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly weather review, 91(3), 99-164.
[54] Spiske, M., Borocz, Z., & Bahlburg, H. (2008). The role of porosity in discriminating between tsunami and hurricane emplacement of boulders—a case study from the Lesser Antilles, southern Caribbean. Earth and Planetary Science Letters, 268(3-4), 384-396.
[55] Spiske, M., & Bahlburg, H. (2011). A quasi-experimental setting of coarse clast transport by the 2010 Chile tsunami (Bucalemu, Central Chile). Marine Geology, 289(1-4), 72-85.
[56] Suzuki, A., Yokoyama, Y., Kan, H., Minoshima, K., Matsuzaki, H., Hamanaka, N., & Kawahata, H. (2008). Identification of 1771 Meiwa Tsunami deposits using a combination of radiocarbon dating and oxygen isotope microprofiling of emerged massive Porites boulders. Quaternary Geochronology, 3(3), 226-234.
[57] Swegle, J. W., Hicks, D. L., & Attaway, S. W. (1995). Smoothed particle hydrodynamics stability analysis. Journal of computational physics, 116(1), 123-134.
[58] Wang, C. Y., & Liang, V. C. (1997). A packing generation scheme for the granular assemblies with planar elliptical particles. International Journal for Numerical and Analytical Methods in Geomechanics, 21(5), 347-358.
[59] Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards And Earth System Science, 3(5), 391-402.
[60] White, F. M. (2017). Fluid Mechanics Fourth Edition.
[61] Wu, T. R. (2004). A numerical study of three-dimensional breaking waves and turbulence effects.
[62] Wu, T. R., Huang, C. J., Wang, C. Y., & Chu, C. R. (2011). Dynamic coupling of multi-phase fluids with a moving obstacle. Journal of Marine Science and Technology, 19(6), 643-650.
[63] Wu, T. R., Chu, C. R., Huang, C. J., Wang, C. Y., Chien, S. Y., & Chen, M. Z. (2014). A two-way coupled simulation of moving solids in free-surface flows. Computers & Fluids, 100, 347-355.
[64] Zhang, K., Yan, K., Chu, X. S., & Chen, G. Y. (2010). Numerical simulation of the water-entry of body based on the Lattice Boltzmann method. Journal of Hydrodynamics, Ser. B, 22(5), 872-876.
[65] Ned Rozell. The demise of Scotch Cap Lighthouse. (https://news.uaf.edu/demise-scotch-cap-lighthouse)
[66] Quirin Schiermeier. Huge landslide triggered rare Greenland mega-tsunami. (https://www.nature.com/news/1.22374)
[67] 宇佐美龍夫. (2003). 最新版日本被害地震?? [416]-2001:[付] 安政江?地震大名家被害一?表. 東京大?出版?.
[68] 朱佳仁,「環境流體力學」,科技圖書股份有限公司,2003。
[69] 吳祚任,「台灣海嘯石之運動模擬與古海嘯事件重置」,國家科學委員會應科方案期末報告,2012。
[70] 吳祚任,「台灣自1661年起之11次台灣歷史海嘯紀錄」,2013。
(http://tsunami.ihs.ncu.edu.tw/tsunami/history.htm)
[71] 陳曉敏,「卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證」,碩士論文,國立中央大學土木工程學系,2014。
[72] 李珮瑜,「蘭嶼海嘯石與1867年基隆海嘯之動力分析」,碩士論文,國立中央大學水文與海洋科學研究所,2015。
指導教授 吳祚任(Tso-Ren Wu) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明