博碩士論文 104626601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.135.183.89
姓名 廖凱芹(Khai-Jing Liew)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 桃園海岸近岸流之數值模擬
(Numerical simulation of nearshore current along Taoyuan coast)
相關論文
★ 藻礁區的波浪頻譜消散特性★ 應用聲學及光學儀器在均勻及現場懸浮質濃度之量測率定及比較
★ 碎波帶紊流及剪應力之大尺度實驗觀測研究★ 不均勻珊瑚礁分佈對珊瑚礁冠層附近流場結構之影響
★ 藻礁區之波浪消散特性★ 利用影像處理技術辨識藻礁範圍
★ 桃園海岸近岸流四季變化之研究★ 無人機光達系統應用於沙岸與藻礁地區之波浪能量消散之研究
★ 桃園海岸海漂垃圾現場調查分析之研究★ 桃園新屋海岸波流受海工結構物設置之數值模擬研究
★ 運用監督式分類技術辨識桃園藻礁露出範圍之研究初探★ 以非結構性網格模式探討三接港對桃園海岸波流場之影響
★ 利用ADCP估算地區藻礁潮間帶紊流特性★ 潮間帶礁體懸浮漂沙濃度之現場研究
★ 應用無人機及物件偵測於大園海灘的瓶裝海洋垃圾
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 長久以來,科學家們都認為近岸流場對於物質傳輸過程扮演了重要的角色,而近岸流亦會受到地形、季侯風、潮汐和波浪的影響。在台灣海峽,前人對於此研究的著墨甚少。在另一方面,桃園海岸擁有全台最大的藻礁地形-觀新藻礁。因此,本研究希望(一)透過近岸數值模式(Delft3d)搭配現場觀測資料來探討桃園海岸,尤其是觀新藻礁區域的近岸流的時空變化,(二)探討結構物對近岸流的影響。本研究在夏季時期一共佈置了三臺聲學度普勒流速儀(ADCP)以進行為期四週對波浪及海流的觀測。在模式方面,經過仔細調整曼寧參數及碎波參數後,所使用的近岸數值模式亦成功重建研究區域之流場及水文型態。本研究結果發現,靠近結構物(觀新藻礁區域)的近岸流呈現向西北-北方流的現象。而在遠離結構物(非觀新藻礁區域),近岸流則持續性流向東北方。除此之外,模式分析結果顯示,由於結構物的關係,在觀新藻礁區漲潮時期會產生一逆時針渦流。由於該渦流的關係,觀新藻礁區域裡風場、潮流及波浪之間的交互作用也變得相對複雜。另一方面,在遠離結構物的區域,近岸流主要受到西南季侯風的影響而持續性流向東北方。整體而言,桃園海岸的近岸流特性在空間分佈上有顯著的分別。有別於以往的發現,本研究顯示風場在桃園海岸近岸流扮演了重要的角色。
摘要(英) Nearshore currents are important for material dispersion and sediment transport, yet, not well understood in Taiwan Strait where complicated forcing mechanisms such as influence from topography, tide, wind, waves, and large-scale current exist. This study was conducted along Taoyuan coast using both numerical model (Delft3d) and observational data. Three Acoustic Doppler Current Profilers (ADCPs) were deployed near-coast from June-July to investigate spatial variations of the current pattern. The model current was performed under different forcing conditions (with and without wind, tide, and wave) with various parameters to examine its sensitivity. Results suggested that the Manning coefficient and breaking index are the two most dominant factors affecting simulation performance for Flow-module and Wave-module respectively. Predicted water level and current velocity are in good agreement with field observations with averaged model skill up to 0.8. Based on the results, current pattern along Taoyuan coast displays remarkable spatial inhomogeneity. Current flow in a region far away from the structure was strongly influenced by wind forcing and always directed to northeastward during the Southwesterly monsoon period. Meanwhile, current flow at region close to the structure is primarily associated with wave forcing. In this region, an anti-clockwise eddy is generated due to the existence of coastal structure. The formation of eddy cause complex interaction of tide, wind and wave-driven current that occasionally offset each other. Further study is required in order to clarify the influence of eddy toward local hydrodynamic. This study is important that can enhance understanding of nearshore current pattern at algal reef region which can aid in future reef conservation.
關鍵字(中) ★ 近岸流
★ 突堤效應
★ 藻礁
關鍵字(英) ★ nearshore current
★ forcing mechanism
★ jetty effect
★ algal reef
論文目次 摘要 ii
Abstract iii
Acknowledgement iv
Table of Content v
List of Figures vii
List of Tables ix
Chapter 1: Introduction 1
1.1 Overview of reef 1
1.2 Reef distribution in Taiwan 2
1.3 Significances of study 3
1.4 Objectives of study 3
Chapter 2: Literature review 4
Chapter 3: Methodology 7
3.1 Site description 7
3.2 Field measurement 8
3.3 Model description 8
3.4 Model configuration 10
Chapter 4: Results 17
4.1 Observations 17
4.2 Model validation 18
4.3 Physical forcing analysis 20
Chapter 5: Discussion 38
Chapter 6 Conclusion 45
References 47

參考文獻 AINSWORTH, C. H. & MUMBY, P. J. 2015. Coral-algal phase shifts alter fish communities and reduce fisheries production. Global Change Biology, 21, 165-172.
ALBERT, A., ECHEVIN, V., LÉVY, M. & AUMONT, O. 2010. Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system. Journal of Geophysical Research: Oceans, 115.
BATTJES, J. A. & JANSSEN, J. 1978. Energy loss and set-up due to breaking of random waves. Coastal Engineering 1978.
BRETHERTON, F. P. & GARRETT, C. J. Wavetrains in inhomogeneous moving media. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1968. The Royal Society, 529-554.
CANHANGA, S. & DIAS, J. M. 2005. Tidal characteristics of Maputo bay, Mozambique. Journal of Marine Systems, 58, 83-97.
CETZ-NAVARRO, N. P., QUAN-YOUNG, L. I. & ESPINOZA-AVALOS, J. 2015. Morphological and community changes of turf algae in competition with corals. Scientific reports, 5.
CHAIGNEAU, A., DOMINGUEZ, N., ELDIN, G., VASQUEZ, L., FLORES, R., GRADOS, C. & ECHEVIN, V. 2013. Near‐coastal circulation in the Northern Humboldt Current System from shipboard ADCP data. Journal of Geophysical Research: Oceans, 118, 5251-5266.
CHEN, H.-W., LIU, C.-T., MATSUNO, T., ICHIKAWA, K., FUKUDOME, K.-I., YANG, Y., DOONG, D.-J. & TSAI, W.-L. 2016. Temporal variations of volume transport through the Taiwan Strait, as identified by three-year measurements. Continental Shelf Research, 114, 41-53.
CHOU, C.-H., CHIANG, Y.-C. & LEE, C.-D. 1980. Impacts of Water Pollution on Crop Growth in Taiwan: III.-The Detrimental Effects of Industrial Waste Waters from. Taiwania, 25, 1.
DINGEMANS, M., RADDER, A. & DE VRIEND, H. 1987. Computation of the driving forces of wave-induced currents. Coastal Engineering, 11, 539-563.
FERNÁNDEZ, C. 2016. Current status and multidecadal biogeographical changes in rocky intertidal algal assemblages: The northern Spanish coast. Estuarine, Coastal and Shelf Science, 171, 35-40.
FREDSØE, J. 1984. Turbulent boundary layer in wave-current motion. Journal of Hydraulic Engineering, 110, 1103-1120.
GUILLOU, N. & CHAPALAIN, G. 2012. Modeling the tide-induced modulation of wave height in the outer Seine estuary. Journal of Coastal Research, 28, 613-623.
GUO, X. & VALLE-LEVINSON, A. 2007. Tidal effects on estuarine circulation and outflow plume in the Chesapeake Bay. Continental Shelf Research, 27, 20-42.
HASSELMANN, K. 1974. On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorology, 6, 107-127.
HOLLOWAY-ADKINS, K. G. & HANISAK, M. D. 2015. Macroalgal community within a warm temperate/subtropical biogeographic transition zone in the western Atlantic Ocean. Bulletin of Marine Science, 91, 295-319.
HOMMEL, D., SHI, F., KIRBY, J. T., DALRYMPLE, R. A. & CHEN, Q. 2001. Modelling of a wave-induced vortex near a breakwater. Coastal Engineering 2000.
HU, J., KAWAMURA, H., LI, C., HONG, H. & JIANG, Y. 2010. Review on current and seawater volume transport through the Taiwan Strait. Journal of oceanography, 66, 591-610.
ISOBE, A. 2008. Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves. Journal of Oceanography, 64, 569-584.
JAN, S., CHERN, C.-S. & WANG, J. 2002. Transition of tidal waves from the East to South China Seas over the Taiwan Strait: Influence of the abrupt step in the topography. Journal of Oceanography, 58, 837-850.
JAN, S., CHERN, C. S., WANG, J. & CHAO, S. Y. 2004. The anomalous amplification of M2 tide in the Taiwan Strait. Geophysical Research Letters, 31.
JAN, S., TSENG, Y.-H. & DIETRICH, D. E. 2010. Sources of water in the Taiwan Strait. Journal of oceanography, 66, 211-221.
JONSSON, I. G. 1967. Wave boundary layers and friction factors. Coastal Engineering 1966.
JONSSON, I. G. & WANG, J. D. 1980. Current-depth refraction of water waves. Ocean Engineering, 7, 153-171.
KIM, H., KIMURA, S. & SUGIMOTO, T. 2007. Transport of jack mackerel (Trachurus japonicus) larvae inferred from the numerical experiment in the East China Sea. Bull. Jpn. Soc. Fish. Oceanogr, 71, 9-17.
KLUMPP, D. & MCKINNON, A. 1989. Temporal and spatial patterns in primary production of a coral-reef epilithic algal community. Journal of Experimental Marine Biology and Ecology, 131, 1-22.
LENTZ, S. J., FEWINGS, M., HOWD, P., FREDERICKS, J. & HATHAWAY, K. 2008. Observations and a model of undertow over the inner continental shelf. Journal of Physical Oceanography, 38, 2341-2357.
LI, M. & ZHONG, L. 2009. Flood–ebb and spring–neap variations of mixing, stratification and circulation in Chesapeake Bay. Continental Shelf Research, 29, 4-14.
LIANG, W.-D., TANG, T., YANG, Y., KO, M. & CHUANG, W.-S. 2003. Upper-ocean currents around Taiwan. Deep Sea Research Part II: Topical Studies in Oceanography, 50, 1085-1105.
LONGUET-HIGGINS, M. S. & STEWART, R. 1962. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. Journal of Fluid Mechanics, 13, 481-504.
LONGUET-HIGGINS, M. S. & STEWART, R. Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Research and Oceanographic Abstracts, 1964. Elsevier, 529-562.
LONGUET-HIGGINS, M. S. & STEWART, R. W. 1960. Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics, 8, 565-583.
LOWE, R. J., FALTER, J. L., MONISMITH, S. G. & ATKINSON, M. J. 2009. A numerical study of circulation in a coastal reef‐lagoon system. Journal of Geophysical Research: Oceans, 114.
MADSEN, O. S. & ROSENGAUS, M. M. 1988. Spectral Wave Attenuation by Bottom Friction: Experiments.
MCCOY, A., CONSTANTINESCU, G. & WEBER, L. 2007. A numerical investigation of coherent structures and mass exchange processes in channel flow with two lateral submerged groynes. Water Resources Research, 43.
MUMBY, P. J. 2009. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs, 28, 761-773.
MURPHY, P. L. & VALLE-LEVINSON, A. 2008. Tidal and residual circulation in the St. Andrew Bay system, Florida. Continental Shelf Research, 28, 2678-2688.
MUTHUSANKAR, G., JONATHAN, M., LAKSHUMANAN, C., ROY, P. D. & SRINIVASA-RAJU, K. 2017. Coastal erosion vs man-made protective structures: evaluating a two-decade history from southeastern India. Natural Hazards, 85, 637-647.
OLABARRIETA, M., MEDINA, R. & CASTANEDO, S. 2010. Effects of wave–current interaction on the current profile. Coastal Engineering, 57, 643-655.
PINEDO, S., ZABALA, M. & BALLESTEROS, E. 2013. Long-term changes in sublittoral macroalgal assemblages related to water quality improvement. Botanica Marina, 56, 461-469.
QIU, Y., LI, L., CHEN, C.-T. A., GUO, X. & JING, C. 2011. Currents in the Taiwan Strait as observed by surface drifters. Journal of oceanography, 67, 395.
RIDING, R. 2002. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Reviews, 58, 163-231.
RUSU, L., PILAR, P. & SOARES, C. G. 2008. Hindcast of the wave conditions along the west Iberian coast. Coastal Engineering, 55, 906-919.
SHORT, J., KENDRICK, G., FALTER, J. & MCCULLOCH, M. 2014. Interactions between filamentous turf algae and coralline algae are modified under ocean acidification. Journal of Experimental Marine Biology and Ecology, 456, 70-77.
SOLTAN, D., VERLAQUE, M., BOUDOURESQUE, C. F. & FRANCOUR, P. 2001. Changes in macroalgal communities in the vicinity of a Mediterranean sewage outfall after the setting up of a treatment plant. Marine Pollution Bulletin, 42, 59-70.
SPALL, M. A. & THOMAS, L. N. 2016. Downfront winds over buoyant coastal plumes. Journal of Physical Oceanography, 46, 3139-3154.
UITTENBOGAARD, R. 1992. Large Eddy Simulation and long term computation of shallow, free surface flows with 3D models. WL| Delft Hydraulics, rapport.
VALLE-LEVINSON, A., MORAGA, J., OLIVARES, J. & BLANCO, J. L. 2000. Tidal and residual circulation in a semi-arid bay: Coquimbo Bay, Chile. Continental Shelf Research, 20, 2009-2028.
VAN RIJN, L. 2011. Coastal erosion and control. Ocean & Coastal Management, 54, 867-887.
WASHBURN, L., FEWINGS, M. R., MELTON, C. & GOTSCHALK, C. 2011. The propagating response of coastal circulation due to wind relaxations along the central California coast. Journal of Geophysical Research: Oceans, 116.
WHITHAM, G. 1962. Mass, momentum and energy flux in water waves. Journal of Fluid Mechanics, 12, 135-147.
WINANT, C. D. 1980. Coastal circulation and wind-induced currents. Annual Review of Fluid Mechanics, 12, 271-301.
WOLF, J. & PRANDLE, D. 1999. Some observations of wave–current interaction. Coastal Engineering, 37, 471-485.
YANG, S.-S. 1998. Methane production in river and lake sediments in Taiwan. Environmental Geochemistry and Health, 20, 245-249.
YELLAND, M. & TAYLOR, P. K. 1996. Wind stress measurements from the open ocean. Journal of Physical Oceanography, 26, 541-558.
YU, H., YU, H., DING, Y., WANG, L. & KUANG, L. 2015. On M 2 tidal amplitude enhancement in the Taiwan Strait and its asymmetry in the cross-strait direction. Continental Shelf Research, 109, 198-209.
劉靜瑜 2012. 搶救臺灣藻礁: 消失中的生命聚寶盆, 行政院農業委員會特有生物研究保育中心.
王士偉 2010. 找礁, 藻礁, 找藻礁. 國立自然科學博物館館訊.

指導教授 黃志誠(Zhi-Cheng Huang) 審核日期 2018-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明