博碩士論文 104690605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:187 、訪客IP:3.227.252.54
姓名 文龍(Haekal Azief Haridhi)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 蘇門答臘隱沒帶地震活動研究:大地震序列,地震危害和隱沒板塊特性
(Study on Seismic Activity at The Sumatra Subduction Zone: Large Earthquake Sequences, Seismic Hazard and Subduction Slab Properties)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-11-30以後開放)
摘要(中) 蘇門答臘隱沒帶地震活動研究:大地震序列,地震危害和隱沒板塊特性

摘要

蘇門達臘隱沒帶是世界上非常活耀的聚合型板塊邊界之一,本研究將沿著隱沒帶前緣地震活動做研究,並提出新的觀點說明在目前未被定義的活動斷層和隱沒帶特性的相互作用下所產生危險性是非常重要。隨著地球物理觀測的進步和資料累積,蘇門達臘板塊構造的機制提供了良好的研究問題的機會。
蘇門答臘隱沒帶主要是由澳大利亞海洋板塊隱沒至Sunda大陸板塊之下所形成,隱沒同時也產生巨大地震並伴隨著巨大的災害和損失,不僅影響當地區域同時也影響全世界。而在現今的蘇門答臘隱沒帶的板塊運動,主要是由三個的斷層系統所組成: 1.隱沒帶上的逆衝斷層, 2. Mentawai斷層(MF)(右走向滑移斷層), 3.蘇門答臘斷層帶(SFZ)。在本論文研究則涵蓋了這三個主要的斷層系統,因此沿著這個隱沒帶做研究將會有研究尺度大小的問題,由於地球物理資料上的蒐集需要沿著這些系統的邊緣觀察,雖然會有一些限制但是是無可避免的。因此本論文將可提供新的資訊和和更高水準地觀測解析度。本論文將在第一章節詳細討論本研究區域的板塊結構和本研究的關係。
本研究區域資料由印度尼西亞氣象、氣候和地球物理局(BMKG)所提供的地震時間序列目錄,將在本研究第二章說明。在研究區範圍由BMKG所記錄到的地區尺度地震兩年(2009年至2011年)資料比國際機構,例如國際地震中心(ISC)所提供的免費數據資料具有較高解析度的資料品質。因此我們利用高密度和高解析度的地震資料透 hypocentre double difference的技術再次將地震重新定位,而得到高階析度的速度模型。從結果顯示,資料的品質得到大幅的改善,明顯的觀察到大的地震序列,例如: Padang地震、Banyak地震和Mentawai海嘯地震序列。在巴尼亞克群島(Banyak Islands)的地震序被確認是向東南傾且伴隨著上部的分歧斷層(splay fault)活動。而在此也發現Mentawai空白帶只發生少量地震,我們將視為此區域地層材質較為粗糙而導致該地區的能量持續累積,而這些斷層將可能成為海嘯災害的主要威脅。
雖然在第二章節中所提到地震目錄上所使用到的時間尺度上是受到限制的,但地震沿著蘇門答臘斷裂帶(Sumatra Fault Zone,SFZ)的發生是可以被觀察到的。在SFZ上的地震活動規模介於6至7.7之間,在這區域是能夠產生大規模的地震的。我們將在第三章中探討SFZ的北端構造和可能的危害。在本章重新處理了兩條震測反射剖面,從結果反射訊號結果顯示一些混沌相(chaotic facies)是和SFZ有者強烈的相關性,這些證據表示了在這區域裡曾經發生大型的海底地滑.海嘯發生的情境是通過模擬地震引致海底斷層錯動和引致海底滑坡兩種形式產生的水體變動為海嘯源。在極端的案例下,結合此兩種機制並透過數值模擬的計算,如果地震規模達(Mw)達到7 或更大,將會引發寬約300公尺,長約600公尺範圍的海床滑動,並可能在沿海地區產生浪高4公尺的海嘯。因此在本章節中非常強烈的顯示該地區的走向滑移斷層系統所觸發的海底地滑和海嘯產生具有強烈的相關。這些機制或可解釋部分歷史上曾發生的海嘯並未伴隨明顯的陸地受到強烈震害的記載,這也暗示了在本地區建立監測海底地滑引致海嘯的早期預警系統的必要性。
本文所討論的兩個章節(第二章和第三章),包含了蘇門答臘隱沒帶的主要斷層系統。然而其它的地震活動也是非常重要的,我們時常忽視了深度範圍大於100公里的中等深度地震,然而在我們所認知的蘇門答臘構造環境具有一個靠近海溝的弧前島嶼,存在於海洋板塊隱沒至20到30公里深處,這些島嶼為我們研究隱沒帶地震提供了很好的研究機會。在第四章中,我們利用測站蒐集到的地震波資訊估計地震波通過板塊構造中低速波導層所產生的頻散(disperrsed)現象。利用分析頻散速度曲線,瞭解來自海洋地殼中間深度的地方(大於等於100公里深)板塊速度結構。從頻散的結果顯示速度約減少了2% 到4% ,和世界其他年齡相近的隱沒帶所表現的結果也是一致的(例如:阿拉斯加隱沒帶Alaska subduction zone)。從觀測到的不同頻率地殼波速延遲現象可以顯示地殼的低速帶的厚度,而此低速帶的發現是非常重要的,有助於了解中深層的地震發生以及板塊隱沒時所發生過的經歷和過程。
摘要(英) Study on Seismic Activity at The Sumatra Subduction Zone: Large Earthquake Sequences, Seismic Hazard and Subduction Slab Properties

ABSTRACT

The Sumatra subduction zone exhibit as one of the most actives convergence plate boundary. The study on the seismic activity along this margin will give new perspectives on how the interaction between the earthquake occurrences on the governing active unidentified-identified faults, the hazard that might result by these faults activity and the properties of the subducting slab are considered important. The tectonic setting of the Sumatra, as well as the increasing amount of observational geophysical data, gives the opportunity to study these problems.
The oblique subduction of Australian oceanic plate beneath the continental Sunda plate has produced large – mega earthquake with most of them has induced significant lost not only at regional scale, but also worldwide. Three major faults system occupied the tectonic processes at present day Sumatra subduction zone, i.e. 1. Thrust fault at the subduction zone, 2. The Mentawai Fault (MF) (right-lateral strike-slip) and 3. The Sumatra Fault Zone (SFZ) (right-lateral strike-slip). Thus, having a broad scale problem along this subduction zone, the study brought into this dissertation is covering those major faults system though some limitations are unavoidable due to the availability of the geophysical dataset and or observation along this margin. Though, the data are somewhat limited, however, most of the dataset is obtained from local observation with limited access. Therefore, this dissertation is expected to provide new information and at a higher level of observational resolution. The detailed structure of the dissertation and the relationship of the studies within each chapter is discussed in Chapter 1.
An opportunity to analyze the earthquake event catalogs with their travel time provided by the Badan Meteorologi, Klimatologi dan Geofisika (BMKG) Indonesia is established in Chapter 2. This work showed that the data records by the local institution BMKG on a regional scale within two years (2009 to 2011) cover a higher resolution of datasets compare to the freely available dataset managed by the international institution, e.g. International Seismological Centre (ISC). Accordingly, by having a dense and high resolution dataset, we relocate the earthquake events based on hypocentre double difference techniques with a refined velocity model. The result shows quality improvement of the dataset with clear large earthquake sequences being observed, i.e. the Padang earthquake, the Banyak earthquake, and the Mentawai tsunami earthquake sequences. A southeast dipping of earthquake lineation was identified within the Banyak Islands earthquake sequence and considered as the activity of the upper splay fault. Limited earthquake activity was identified at the Mentawai gap region and considered as a locked asperity. Those faults could be as a major threat of a great source of tsunamigenic fault.
Although only limited time range of the earthquake event catalog used in Chapter 2, limited earthquakes along the SFZ were observed. The seismicity along SFZ has its magnitude between 6 and 7.7. On that account, the SFZ is capable to produce a large magnitude of earthquakes. We investigate the northern end of the SFZ and its hazard in Chapter 3. In this chapter, based on two reprocessed seismic reflection profiles, the image shows that the extended Sumatra Fault Zone strongly related to some chaotic facies indicating an evidence of large triggered submarine landslide ever occurred in this region. Tsunami scenarios were simulated with a combined source of fault activity and submarine landslide. In extreme case, by these combined mechanisms, if the earthquake as large as 7 Mw or larger and triggered a submarine landslide with a length of 600 meters and width of 300 meters, it could produce a tsunami as high as 4 meters along the coast. Hence, in this chapter it is strongly showed the potential tsunami hazard related to the submarine landslide triggering of a strike slip fault system, this mechanism may explain also some history tsunami in this area without a clear earthquake signature inland, and imply the necessity of landslide tsunami early warning system in this area.
The two chapters (Chapter 2 and 3) discussed in this dissertation are covered the major faults system along the Sumatra subduction zone. The other earthquake activities that are considered important but being paid less attention and or sometimes neglected are the intermediate depth earthquake which has a depth range greater and equal to 100 km depth. Acknowledged the advantages of the Sumatra tectonic setting, i.e. which has the forearc islands close to the trench and just 20-30 km above the subduction plate interface, it gives the opportunity to investigate the detailed properties of the subducting plate. In Chapter 4, by utilizing the observation of body wave dispersion at the forearc stations, we could estimate the dispersion curve that caused by a waveguide structure which acts as a low velocity layer (LVL) from the former oceanic crust existed at the intermediate depth (greater and equal to 100 km). A velocity reduction of 2 – 4 % resulted from this dispersion showed an agreement to the observation at other subduction zones with similar age of the subducting plate around the world (e.g. Alaska subduction zone). The significant delay for a certain frequency range that observed from the dispersion curve may indicate the thickness of the LVL. The finding of the LVL is considered important in understanding the occurrence of the intermediate – deep earthquake as well as the fate of the subducting plate that undergo the subduction processes.
關鍵字(中) ★ Subduction Zone
★ Large Earthquake
★ Seismic Hazard
★ Slab Properties
★ Sumatra
★ Indonesia
關鍵字(英) ★ Subduction Zone
★ Large Earthquake
★ Seismic Hazard
★ Slab Properties
★ Sumatra
★ Indonesia
論文目次 Table of Contents

摘要 ........................................................................................................i
ABSTRACT.............................................................................................iii
ACKNOWLEDGMENT..............................................................................v
List of Figures......................................................................................viii
List of Tables.......................................................................................xiii
Chapter 1 Introduction............................................................................1
1.1 Seismotectonic Background..........................................................1
1.1.1 Tectonic setting of Sumatra....................................................1
1.1.2 Seismicity at the Sumatra subduction zone...........................4
1.2 Objectives and Limitation............................................................6
1.2.1 Objectives............................................................................6
1.2.2 Limitation.............................................................................8
1.3 Structure of Dissertation and Its Relationship With Each Chapter
...................................................................................................9
Chapter 2 A Study of Large Earthquake Sequences in The Sumatra Subduction Zone and Its Possible Implications.....................................11
2.1 Abstract....................................................................................11
2.2 Introduction.............................................................................12
2.3 Seismic Data............................................................................15
2.4 Analysis and Result..................................................................17
2.4.1 Regional 1-D model estimation.........................................17
2.4.2 Relocation of BMKG catalog events.................................18
2.4.3 Seismic cross sections....................................................24
2.5 Discussion..............................................................................28
2.5.1 The Padang earthquake sequence..................................28
2.5.2 The Banyak Islands earthquake sequence......................31
2.5.3 The Mentawai tsunami earthquake sequence.................33
2.5.4 The other earthquake activities......................................35
2.6 Summary................................................................................37
Chapter 3 Tsunami Hazard Related to Triggered Submarine Landslide at Northern Tip of Sumatra......................................................................38
3.1 Abstract..................................................................................38
3.2 Introduction............................................................................39
3.3 Data and Analysis...................................................................42
3.3.1 Single Channel Seismic (SCS) reflection data.................42
3.3.2 Community-Based Bathymetric Survey (CBBS) data......45
3.3.3 Slope stability analysis...................................................48
3.3.4 Tsunami model of earthquake and landslide sources.....50
3.4 Result.....................................................................................52
3.4.1 Evidences of the paleo-landslide....................................52
3.4.2 Stability evaluation of seafloor morphology....................53
3.4.3 Scenario of Tsunami model.............................................57
3.5 Discussion..............................................................................62
3.6 Conclusion.............................................................................63
Chapter 4 Constraining the Subducting Oceanic Plate Properties Beneath Central Sumatra – Insight from Body Wave Dispersion..........65
4.1 Abstract..................................................................................65
4.2 Introduction............................................................................66
4.3 Observation of Body Wave Dispersion...................................68
4.4 Discussion..............................................................................78
4.5 Conclusion.............................................................................82
Chapter 5 Concluding Remarks and Future Works...............................83
5.1 Concluding Remarks...............................................................83
5.2 Future Works..........................................................................85
References...........................................................................................87
Appendix 1: Supplementary Material Chapter 2..................................107
Appendix 2: Supplementary Material Chapter 3.................................109
Appendix 3: Supplementary Material Chapter 4..................................118
參考文獻 Abers, G. A. (2000). Hydrated subducted crust at 100-250 km depth. Earth and Planetary Science Letters, 176, 323–330. https://doi.org/10.1016/S0012-821X(00)00007-8

Abers, G. A. (2005). Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematics. Physics of the Earth and Planetary Interiors, 149, 7–29. https://doi.org/10.1016/j.pepi.2004.10.002

Abers, G. A., and Sarker, G. (1996). Dispersion of regional body waves at 100-150 km depth beneath Alaska: In situ constraints on metamorphism of subducted crust. Geophysical Research Letters, 23(10), 1171–1174. https://doi.org/10.1029/96GL00974

Ahrens, T. J., and Schubert, G. (1975). Gabbro‐eclogite reaction rate and its geophysical significance. Reviews of Geophysics and Space Physics, 13(2), 383–400. https://doi.org/10.1029/RG013i002p00383

Ammon, C. J., Ji, C., Thio, H. K., Robinson, D., Ni, S., Hjorleifsdottir, V., Kanamori, H., Lay, T., Das, S., Helmberger, D., Ichinose, G., Polet, J., and Wald, D. (2005). Rupture process of the 2004 Sumatra-Andaman earthquake. Science, 308(5725), 1133–1139. https://doi.org/10.1126/science.1112260

Araki, E., Shinohara, M., Obana, K., Yamada, T., Kaneda, Y., Kanazawa, T., and Suyehiro, K. (2006). Aftershock distribution of the 26 December 2004 Sumatra-Andaman earthquake from ocean bottom seismographic observation. Earth, Planets and Space, 58, 113–119. https://doi.org/10.1186/bf03353367

Bao, H., Ampuero, J.-P., Meng, L., Fielding, E. J., Liang, C., Milliner, C. W. D., Feng, T., and Huang, H. (2019). Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nature Geoscience, 12, 200–205. https://doi.org/10.1038/s41561-018-0297-z

Barber, A. J., and Milsom, J. S. (2005). (eds) Sumatra: geology, resources and tectonic evolution. In Giological Society, London, Memoirs (Vol. 31).

Barckhausen, U. (2006). The Segmentation of the Subduction Zone Offshore Sumatra: Relations Between Upper and Lower Plate. AGU Fall Meeting Abstracts, U53A-0029.

Berglar, K., Gaedicke, C., Ladage, S., and Thöle, H. (2017). The Mentawai forearc sliver off Sumatra: A model for a strike-slip duplex at a regional scale. Tectonophysics, 710–711, 225–231. https://doi.org/10.1016/j.tecto.2016.09.014

BIG. (2019). Badan Informasi Geospasial. Retrieved 15 April 2019, from http://tides.big.go.id/

Bilek, S. L., Engdahl, E. R., Deshon, H. R., and El Hariri, M. (2011). The 25 October 2010 Sumatra tsunami earthquake: Slip in a slow patch. Geophysical Research Letters, 38, L14306. https://doi.org/10.1029/2011GL047864

Briggs, R. W., Sieh, K., Meltzner, A. J., Natawidjaja, D., Galetzka, J., Suwargadi, B., Hsu, Y.-J., Simons, M., Hananto, N., Suprihanto, I., Prayudi, D., Avouac, J.-P., Prawirodirdjo, L., and Bock, Y. (2006). Deformation and Slip Along the Sunda Megathrust in the Great 2005 Nias-Simeulue Earthquake. Science, 311, 1897–1901. https://doi.org/10.1126/science.1122602

Chen, K. H., Kennett, B. L. N., and Furumura, T. (2013). High-frequency waves guided by the subducted plates underneath Taiwan and their association with seismic intensity anomalies. Journal of Geophysical Research: Solid Earth, 118, 665–680. https://doi.org/10.1002/jgrb.50071

Chlieh, M., Avouac, J. P., Sieh, K., Natawidjaja, D. H., and Galetzka, J. (2008). Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. Journal of Geophysical Research, 113, B05305. https://doi.org/10.1029/2007JB004981

Collings, R., Lange, D., Rietbrock, A., Tilmann, F., Natawidjaja, D., Suwargadi, B., Miller, M. and Saul, J. (2012). Structure and seismogenic properties of the Mentawai segment of the Sumatra subduction zone revealed by local earthquake traveltime tomography. Journal of Geophysical Research, 117, B01312. https://doi.org/10.1029/2011JB008469

Delescluse, M., and Chamot-Rooke, N. (2007). Instantaneous deformation and kinematics of the India-Australia Plate. Geophysical Journal International, 168(2), 818–842. https://doi.org/10.1111/j.1365-246X.2006.03181.x

Deplus, C., Diament, M., Hébert, H., Bertrand, G., Dominguez, S., Dubois, J., Malod, J., Patriat, P., Pontoise, B., and Sibilla, J.-J. (1998). Direct evidence of active deformation in the eastern Indian oceanic plate. Geology, 26(2), 131–134.

Dugan, B., and Flemings, P. B. (2002). Fluid flow and stability of the US continental slope offshore New Jersey from the Pleistocene to the present. Geofluids, 2, 137–146. https://doi.org/10.1046/j.1468-8123.2002.00032.x

Duncan, J. M. (1996). State of the art: limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical Engineering, 122, 577–596. https://doi.org/10.1061/(asce)0733-9410(1996)122:7(577)

Dziewonski, A., Bloch, S., and Landisman, M. (1969). A technique for the analysis of transient seismic signals. Bulletin of the Seismological Society of America, 59(1), 427–444.

Dziewonski, A. M., Chou, T.-A., and Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86(B4), 2825–2852.

Ekström, G., Nettles, M., and Dziewonski, A. M. (2012). The global CMT project 2004 – 2010 : Centroid-moment tensors. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

Engdahl, E. R., Villaseñor, A., DeShon, H. R., and Thurber, C. H. (2007). Teleseismic relocation and assessment of seismicity (1918-2005) in the region of the 2004 Mw 9.0 Sumatra-Andaman and 2005 Mw 8.6 Nias Island great earthquakes. Bulletin of the Seismological Society of America, 97(1A), S43–S61. https://doi.org/10.1785/0120050614

Fauzi, McCaffrey, R., Wark, D., Sunaryo, Haryadi, P. Y. P. (1996). Lateral variation in slab orientation beneath Toba Caldera, northern Sumatra. Geophysical Research Letters, 23(5), 443–446. https://doi.org/10.1029/96GL00381

Fernández-Blanco, D., Philippon, M., and Hagke, C. V. (2016). Structure and kinematics of the Sumatran Fault System in North Sumatra (Indonesia). Tectonophysics, 693, 453–464. https://doi.org/10.1016/j.tecto.2016.04.050

Franke, D., Schnabel, M., Ladage, S., Tappin, D. R., Neben, S., Djajadihardja, Y. S., Müller, C., Kopp, H., and Gaedicke, C. (2008). The great Sumatra-Andaman earthquakes - Imaging the boundary between the ruptures of the great 2004 and 2005 earthquakes. Earth and Planetary Science Letters, 269, 118–130. https://doi.org/10.1016/j.epsl.2008.01.047

Garth, T., and Rietbrock, A. (2017). Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves. Earth and Planetary Science Letters, 474, 237–247. https://doi.org/10.1016/j.epsl.2017.06.041

Genrich, J. F., Bock, Y., McCaffrey, R., Prawirodirdjo, L., Stevens, C. W., Puntodewo, S. S. O., Subarya, C., and Wdowinski, S. (2000). Distribution of slip at the northern Sumatra fault system. Journal of Geophysical Research, 105(B12), 28327–28341. https://doi.org/10.1029/2000JB900158

Ghosal, D., Singh, S. C., Chauhan, A. P. S., and Hananto, N. D. (2012). New insights on the offshore extension of the Great Sumatran fault, NW Sumatra, from marine geophysical studies. Geochemistry, Geophysics, Geosystems, 13, Q0AF06. https://doi.org/10.1029/2012GC004122

Goldstein, P., and Snoke, A. (2005). SAC availability for the IRIS community. Incorporated Institutions for Seismology Data Management Center Electronic Newsletter. Retrieved from http://ds.iris.edu/ds/newsletter/vol7/no1/

Goldstein, P., Dodge, D., Firpo, M., and Minner, L. (2003). SAC2000: Signal processing and analysis tools for seismologists and engineers. International Geophysics, 81, 1613–1614. https://doi.org/10.1016/S0074-6142(03)80284-X

Gusman, A. R., Supendi, P., Nugraha, A. D., Power, W., Latief, H., Sunendar, H., Widiyantoro, S., Daryono, Wiyono, S. H., Hakim, A., Muhari, A., Wang, X., Burbidge, D., Palgunadi, K., Hamling, I., and Daryono, M. R. (2019). Source model for the tsunami inside Palu Bay following the 2018 Palu earthquake, Indonesia. Geophysical Research Letters, 46(15), 8721–8730. https://doi.org/10.1029/2019gl082717

Hacker, B. R., Abers, G. A., and Peacock, S. M. (2003a). Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research, 108(B1), 2029. https://doi.org/10.1029/2001jb001127

Hacker, B. R., Peacock, S. M., Abers, G. A., and Holloway, S. D. (2003b). Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research: Solid Earth, 108(B1), 2030. https://doi.org/10.1029/2001jb001129

Hampton, M. A., Lee, H. J., and Locat, J. (1996). Submarine landslides. Reviews of Geophysics, 34(1), 33–59. https://doi.org/10.1029/95RG03287

Hanks, T. C., and Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84(B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348

Harbitz, C. B., Løvholt, F., and Bungum, H. (2014). Submarine landslide tsunamis: How extreme and how likely? Natural Hazards, 72(3), 1341–1374. https://doi.org/10.1007/s11069-013-0681-3

Haridhi, H. A., Nanda, M., Wilson, C. R., and Rizal, S. (2016). Preliminary study of the sea surface temperature (SST) at fishing ground locations based on the net deployment of traditional purse-seine boats in the northern waters of Aceh — A community-based data collection approach. Regional Studies in Marine Science, 8. https://doi.org/10.1016/j.rsma.2016.10.002

Haridhi, H. A., Huang, B.-S., Wen, K.-L., Denzema, D., Prasetyo, R. A., and Lee, C.-S. (2018). A study of large earthquake sequences in the Sumatra subduction zone and its possible implications. Terrestrial, Atmospheric and Oceanic Sciences, 29(6), 635–652. https://doi.org/10.3319/TAO.2018.08.22.01

Hayes, G. P., Wald, D. J., and Johnson, R. L. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 117, B01302. https://doi.org/10.1029/2011JB008524

Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., and Wijanarto, A. B. (2020). Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia. Ocean Engineering, 195, 106733. https://doi.org/10.1016/j.oceaneng.2019.106733

Heinrich, P. H., Piatanesi, A., and Hébert, H. (2001). Numerical modelling of tsunami generation and propagation from submarine slumps: The 1998 Papua New Guinea event. Geophysical Journal International, 145, 97–111. https://doi.org/10.1111/j.1365-246X.2001.00336.x

Henstock, T. J., McNeill, L. C., Bull, J. M., Cook, B. J., Gulick, S. P. S., Austin, J. A., Permana, H., and Djajadihardja, Y. S. (2016). Downgoing plate topography stopped rupture in the A.D. 2005 Sumatra earthquake. Geology, 44(1), 71–74. https://doi.org/10.1130/G37258.1

Hornbach, M. J., Braudy, N., Briggs, R. W., Cormier, M. H., Davis, M. B., Diebold, J. B., Dieudonne, N., Douilly, R., Frohlich, C., Gulick, S. P. S., Johnson III, H. E., Mann, P., McHugh, C., Ryan-Mishkin, K., Prentice, C. S., Seeber, L., Sorlien, C. C., Steckler, M. S., Symithe, S. J., Taylor, F. W., and Templeton, J. (2010). High tsunami frequency as a result of combined strike-slip faulting and coastal landslides. Nature Geoscience, 3, 783–788. https://doi.org/10.1038/ngeo975

Hsu, Y., Simons, M., Avouac, J.-P., Galetzka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L., and Bock, Y. (2006). Frictional afterslip following the 2005 Nisa-Simeulue earthquake, Sumatra. Science, 312, 1921–1927.

Huang, B. S., Huang, Y. L., Leu, P. L., and Lee, S. J. (2011). Estimation of the rupture velocity and fault length of the 2004 Sumatra-Andaman earthquake using a dense broadband seismic array in Taiwan. Journal of Asian Earth Sciences, 40, 762–769. https://doi.org/10.1016/j.jseaes.2010.10.020

Ishii, M., Shearer, P. M., Houston, H., and Vidale, J. E. (2007). Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array. Journal of Geophysical Research, 112, B11307. https://doi.org/10.1029/2006JB004700

Kawakatsu, H. (1986). Downdip tensional earthquakes beneath the Tonga Arc: A double seismic zone? Journal of Geophysical Research, 91(B6), 6432–6440. https://doi.org/10.1029/jb091ib06p06432

Kawata, Y., Benson, B. C., Borrero, J. C., Borrero, J. L., Daoies, H. L., Lange, W. P., Imamura, F., Letz, H., Nott, J., and Synolakis, C. E. (1999). Tsunami in papua New Guinea was as intense as first thought. Eos, 80(9), 101–105. https://doi.org/10.1029/99EO00065

Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95, 406–421. https://doi.org/10.1016/0148-9062(85)92394-0

Kennett, B. L. N., Engdahl, E. R., and Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122, 108–124. https://doi.org/https://doi.org/10.1111/j.1365-246X.1995.tb03540.x

Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., and Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research, 99(B10), 19635–19646.

Klingelhoefer, F., Gutscher, M. A., Ladage, S., Dessa, J. X., Graindorge, D., Franke, D., André, C., Permana, H., Yudistira, T., and Chauhan, A. (2010). Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatra-Andaman earthquake: Results from seismic refraction and wide-angle reflection surveys and thermal modeling. Journal of Geophysical Research, 115, B01304. https://doi.org/10.1029/2009JB006569

Konca, A. O., Avouac, J. P., Sladen, A., Meltzner, A. J., Sieh, K., Fang, P., Li, Z., Galetzka, J., Genrich, J., Chlieh, M., Natawidjaja, D. H., Bock, Y., Fielding, E. J., Ji, C., and Helmberger, D. V. (2008). Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature, 456, 631–635. https://doi.org/10.1038/nature07572

Konca, A. O., Hjorleifsdottir, V., Song, T. R. A., Avouac, J. P., Helmberger, D. V., Ji, C., Sieh, K., Briggs, R., and Meltzner, A. (2007). Rupture kinematics of the 2005 Mw 8.6 Nias-Simeulue earthquake from the joint inversion of seismic and geodetic data. Bulletin of the Seismological Society of America, 97(1 A), S307–S322. https://doi.org/10.1785/0120050632

Koulakov, I., Kasatkina, E., Shapiro, N. M., Jaupart, C., Vasilevsky, A., El Khrepy, S., Al-Arifi, N., and Smirnov, S. (2016). The feeder system of the Toba supervolcano from the slab to the shallow reservoir. Nature Communications, 7, 1–12. https://doi.org/10.1038/ncomms12228

Lange, D., Tilmann, F., Henstock, T., Rietbrock, A., Natawidjaja, D., and Kopp, H. (2018). Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network. Solid Earth, 9, 1035–1049. https://doi.org/10.5194/se-9-1035-2018

Lange, D., Tilmann, F., Rietbrock, A., Collings, R., Natawidjaja, D. H., Suwargadi, B. W., Barton, P., Henstock, T., and Ryberg, T. (2010). The Fine Structure of the Subducted Investigator Fracture Zone in Western Sumatra as Seen by Local Seismicity. Earth and Planetary Science Letters, 298(1–2), 47–56. https://doi.org/10.1016/j.epsl.2010.07.020

Lay, T., Ammon, C. J., Kanamori, H., Yamazaki, Y., Cheung, K. F., and Hutko, A. R. (2011). The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophysical Research Letters, 38, L06302. https://doi.org/10.1029/2010GL046552

Lay, T, Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C., Beck, S. L., Bilek, S. L., Brudzinski, M. R., Butler, R., DeShon, H. R., Ekström, G., Satake, K., and Sipkin, S. (2005). The Great Sumatra-Anadaman Earthquake of 26 December 2004. Science, 308(May), 1127–1133. https://doi.org/10.1126/science.1112250

Lay, Thorne, Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., Yue, H., and Rushing, T. M. (2012). Depth-varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research, 117, B04311. https://doi.org/10.1029/2011JB009133

Lee, J. H., and Edwards, D. (1986). Regional method to assess offshore slope stability. Journal of Geothechnical Engineering, 112(5), 489–509. https://doi.org/doi.org/10.1061/(ASCE)0733-9410(1986)112:5(489)

Lin, C. H., Huang, B. S., and Rau, R. J. (1999). Seismological evidence for a low-velocity layer within the subducted slab of southern Taiwan. Earth and Planetary Science Letters, 174, 231–240. https://doi.org/10.1016/S0012-821X(99)00255-1

Lin, J. Y., Le Pichon, X., Rangin, C., Sibuet, J. C., and Maury, T. (2009). Spatial aftershock distribution of the 26 December 2004 great Sumatra-Andaman earthquake in the northern Sumatra area. Geochemistry, Geophysics, Geosystems, 10(5), Q05006. https://doi.org/10.1029/2009GC002454

Liu, P. L.-F., Cho, Y.-S., Briggs, M. J., Kanoglu, U., and Synolakis, C. E. (1995). Runup of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259–285. https://doi.org/10.1017/S0022112095004095

Liu, X., and Zhao, D. (2018). Upper and lower plate controls on the great 2011 Tohoku-oki earthquake. Science Advances, 4, eaat4396.

Luetgert, J. H. (1992). MacRay; Interactive two-dimensional seismic raytracing for the Macintosh. In U.S. Geological Survey open-file report (Vol. 92–356).

Malod, J. A., and Kemal, B. M. (1996). The Sumatra margin: oblique subduction and lateral displacement of the accretionary prism. Geological Society, London, Special Publications, 106, 19–28. https://doi.org/10.1144/gsl.sp.1996.106.01.03

Martin, S., and Rietbrock, A. (2003). Guided waves propagating in subducted oceanic crust. Journal of Geophysical Research, 108(B11), 2536. https://doi.org/10.1029/2003jb002450

Martin, S., and Rietbrock, A. (2006). Guided waves at subduction zones: dependencies on slab geometry, receiver locations and earthquake sources. Geophysical Journal International, 167, 693–704. https://doi.org/10.1111/j.1365-246X.2006.02963.x

Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., and Løvholt, F. (2006). Submarine landslides: processes , triggers and hazard prediction. Philosophical Transactions of The Royal Society A, 364, 2009–2039. https://doi.org/10.1098/rsta.2006.1810

Mathworks. (2017). Curve Fitting Toolbox: For Use with MATLAB®: User’s Guide. In MATLAB Manual. Retrieved from papers2://publication/uuid/1AB1E427-49D2-43BA-BE5C-B64EE88F3947

McCaffrey, R. (1992). Oblique plate convergence, slip vectors, and forearc deformation. Journal of Geophysical Research, 97(B6), 8905–8915. https://doi.org/10.1029/92JB00483

McCloskey, J., Lange, D., Tilmann, F., Nalbant, S. S., Bell, A. F., Natawidjaja, D. H., and Rietbrock, A. (2010). The September 2009 Padang earthquake. Nature Geoscience, 3, 70–71. https://doi.org/10.1038/ngeo753

McCloskey, J., Nalbant, S. S., and Steacy, S. (2005). Earthquake risk from co-seismic stress. Nature, 434, 291. https://doi.org/10.1038/434291a

Meltzner, A. J., Sieh, K., Abrams, M., Agnew, D. C., Hudnut, K. W., Avouac, J. P., and Natawidjaja, D. H. (2006). Uplift and subsidence associated with the great Aceh-Andaman earthquake of 2004. Journal of Geophysical Research, 111, B02407. https://doi.org/10.1029/2005JB003891

Meltzner, A. J., Sieh, K., Chiang, H., Shen, C., Suwargadi, B. W., Natawidjaja, D. H., Philibosian, B., and Briggs, R. W. (2012). Persistent termini of 2004- and 2005-like ruptures of the Sunda megathrust. Journal of Geophysical Research, 117, B04405. https://doi.org/10.1029/2011JB008888

Meng, L., Ampuero, J.-P., Stock, J., Duputel, Z., Luo, Y., and Tsai, V. C. (2012). An earthquake in a maze: compressional rupture branching during the 2012 Mw 8.6 Sumatra earthquake. Science, 337, 724–726.

Monecke, K., Finger, W., Klarer, D., Kongko, W., McAdoo, B. G., Moore, A. L., and Sudrajat, S. U. (2008). A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature, 455(7217), 1232–1234. https://doi.org/10.1038/nature07374

Moore, G. F., Curray, J. R., Moore, D. G., and Karig, D. E. (1980). Variations in geologic structure along the Sunda fore arc, Northeastern Indian Ocean. In In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, D. E. Hayes (Ed.). (Vol. 23, pp. pp145–pp160). https://doi.org/10.1029/gm023p0145

Muhari, A., Heidarzadeh, M., Susmoro, H., Nugroho, H. D., Kriswati, E., Supartoyo, S., Wijanarto, A. B., Imamura, F., and Arikawa, T. (2019). The December 2018 Anak Krakatau volcano tsunami as inferred from post-tsunami field surveys and spectral analysis. Pure and Applied Geophysics, 1–15. https://doi.org/10.1007/s00024-019-02358-2

Mukti, M. M. R., Singh, S. C., Deighton, I., Hananto, N. D., Moeremans, R., and Permana, H. (2012). Structural evolution of backthrusting in the Mentawai Fault Zone, offshore Sumatran forearc. Geochemistry, Geophysics, Geosystems, 13, Q12006. https://doi.org/10.1029/2012GC004199

Müller, R. D., Roest, W. R., Royer, J.-Y., Gahagan, L. M., and Sclater, J. G. (1997). Digital isochrons of the world’s ocean floor. Journal of Geophysical Research, 102(B2), 3211–3214. https://doi.org/10.1029/96jb01781

Nalbant, S. S., Steacy, S., Sieh, K., Natawidjaja, D., and McCloskey, J. (2005). Earthquake risk on the Sunda trench. Nature, 435, 756–757. https://doi.org/10.1038/nature435755a

Natawidjaja, D. H., Sieh, K., Chlieh, M., Galetzka, J., Suwargadi, B. W., Cheng, H., Edwards, R. L., Avouac, J.-P., and Ward, S. N. (2006). Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls. Journal of Geophysical Research, 111, B06403. https://doi.org/10.1029/2005JB004025

Natawidjaja, D. H., Sieh, K., Ward, S. N., Cheng, H., Edwards, R. L., Galetzka, J., and Suwargadi, B. W. (2004). Paleogeodetic records of seismic and aseismic subduction from central Sumatran microatolls, Indonesia. Journal of Geophysical Research, 109, B04306. https://doi.org/10.1029/2003JB002398

Newcomb, K. R., and McCann, W. R. (1987). Seismic history and seismotectonics of the Sunda Arc. Journal of Geophysical Research, 92(B1), 421–439. https://doi.org/10.1029/JB092iB01p00421

NGDC. (2019). The National Geophysical Data Center tsunami run-up database. Retrieved 15 April 2019, from https://www.ngdc,noaa,gov/hazard/tsu.html

Nugraha, A. D., Shiddiqi, H. A., Widiyantoro, S., Thurber, C. H., Pesicek, J. D., Zhang, H., Wiyono, S. H., Ramdhan, M., Wandono, and Irsyam, M. (2018). Hypocenter Relocation along the Sunda Arc in Indonesia, Using a 3D Seismic‐Velocity Model. Seismological Research Letters, 89(2A), 603–612. https://doi.org/10.1785/0220170107

Okal, E. A., and Synolakis, C. E. (2004). Source discriminants for near-field tsunamis. Geophysical Journal International, 158, 899–912. https://doi.org/10.1111/j.1365-246X.2004.02347.x

Patton, J. R., Stein, R., and Sevilgen, V. (2018). Sunda Strait tsunami launched by sudden collapse of Krakatau volcano into the sea Cause : Earthquake , Landslide , or Volcanic Eruption ? https://doi.org/10.32858/temblor.001

Pesicek, J. D., Thurber, C. H., Widiyantoro, S., Zhang, H., DeShon, H. R., and Engdahl, E. R. (2010). Sharpening the tomographic image of the subducting slab below Sumatra, the Andaman Islands and Burma. Geophysical Journal International, 182, 433–453. https://doi.org/10.1111/j.1365-246X.2010.04630.x

Prawirodirdjo, L., McCaffrey, R., Chadwell, C. D., Bock, Y., and Subarya, C. (2010). Geodetic observations of an earthquake cycle at the Sumatra subduction zone: Role of interseismic strain segmentation. Journal of Geophysical Research, 115, B03414. https://doi.org/10.1029/2008JB006139

Putra, P. S., Aswan, A., Maryunani, K. A., Yulianto, E., and Kongko, W. (2019). Field survey of the 2018 Sulawesi tsunami deposits. Pure and Applied Geophysics, 176(6), 2203–2213. https://doi.org/10.1007/s00024-019-02181-9

Ranero, C. R., Morgan, P. J., McIntosh, K., and Relchert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425, 367–373. https://doi.org/10.1038/nature01961

Reid, M. E., Christian, S. B., Brien, D. L., and Henderson, S. T. (2015). Scoops3D — Software to analyze three-dimensional slope stability throughout a digital landscape: U.S. Geological Survey techniques and methods. In Book 14, Chapter. A1 (p. 218).

Rizal, S., Haridhi, H. A., Wilson, C. R., Hasan, A., and Setiawan, I. (2013). Community collection of ocean current data : An example from Northern Aceh Province, Indonesia. SPC Traditional Marine Resource Management and Knowledge Information Bulletin, 31, 3–11. Retrieved from https://coastfish.spc.int/en/publications/bulletins/traditional-management/413-traditional-information-bulletin-31

Romano, F., Trasatti, E., Lorito, S., Piromallo, C., Piatanesi, A., Ito, Y., Zhao, D., Lanucara, P., and Cocco, M. (2014). Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data. Scientific Reports, 4, 5631. https://doi.org/10.1038/srep05631

Royer, J., and Sandwell, D. T. (1989). Evolution of the eastern Indian Ocean since late cretaceous: contstraints from geosat altimetry. Journal of Geophysical Research, 94(B10), 13755–13782.

Rubin, C. M., Horton, B. P., Sieh, K., Pilarczyk, J. E., Daly, P., Ismail, N., and Parnell, A. C. (2017). Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami. Nature Communications, 8, 16019. https://doi.org/10.1038/ncomms16019

Savage, Y. C. (1969). The mechanics of deep-focus faulting. Tectonophysics, 8(2), 115–127.

Shih, M.-H., Huang, B.-S., Zhu, L., Yen, H.-Y., Chang, T.-M., Huang, W.-G., and Wang, C.-Y. (2014). Fault orientation determination for the 4 March 2008 Taoyuan earthquake from dense near-source seismic observations. Terrestrial, Atmospheric and Oceanic Sciences, 25(5), 637–645. https://doi.org/10.3319/TAO.2014.05.19.01(T)

Sibuet, J. C., Rangin, C., Le Pichon, X., Singh, S., Cattaneo, A., Graindorge, D., Klingelhoefer, F., Lin, J.-Y., Malod, J., Maury, T., Scheider, J.-L., Sultan, N., Umber, M., and Yamaguchi, H. (2007). 26th December 2004 great Sumatra-Andaman earthquake: Co-seismic and post-seismic motions in northern Sumatra. Earth and Planetary Science Letters, 263, 88–103. https://doi.org/10.1016/j.epsl.2007.09.005
Sieh, K., and Natawidjaja, D. (2000). Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research, 105(B12), 28295–28326. https://doi.org/10.1029/2000JB900120

Sieh, K., Natawidjaja, D. H., Meltzner, A. J., Shen, C.-C., Cheng, H., Li, K.-S., Suwargadi, B., Galetzka, J., Philibosian, B., and Edwards, R. L. (2008). Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science, 322, 1674–1678.
Singh, S. C., Hananto, N. D., and Chauhan, A. P. S. (2011). Enhanced reflectivity of backthrusts in the recent great Sumatran earthquake rupture zones. Geophysical Research Letters, 38, L04302. https://doi.org/10.1029/2010GL046227

Singh, S. C., Carton, H., Tapponnier, P., Hananto, N. D., Chauhan, A. P. S., Hartoyo, D., Bayly, M., Moeljopranoto, S., Bunting, T., Christie, P., Lubis, H., and Martin, J. (2008). Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nature Geoscience, 1(11), 777–781. https://doi.org/10.1038/ngeo336

Singh, S. C., Hananto, N. D., Chauhan, A. P. S., Permana, H., Denolle, M., Hendriyana, A., and Natawidjaja, D. (2010). Evidence of active backthrusting at the NE Margin of Mentawai Islands, SW Sumatra. Geophysical Journal International, 180, 703–714. https://doi.org/10.1111/j.1365-246X.2009.04458.x

Socquet, A., Hollingsworth, J., Pathier, E., and Bouchon, M. (2019). Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nature Geoscience, 12, 192–199. https://doi.org/10.1038/s41561-018-0296-0

Tang, G., Barton, P. J., McNeill, L. C., Henstock, T. J., Tilmann, F., Dean, S. M., Jusuf, M. D., Djajadihardja, Y. S., Permana, H., Klingelhoefer, F., and Kopp, H. (2013). 3-D active source tomography around Simeulue Island offshore Sumatra: Thick crustal zone responsible for earthquake segment boundary. Geophysical Research Letters, 40, 48–53. https://doi.org/10.1029/2012GL054148

Tappin, D. R., Matsumoto, T., Watts, P., Satake, K., McMurtry, G. M., Matsuyama, M., Lafoy, Y., Tsuji, Y., Kanamatsu, T., Lus, W., Iwabuchi, Y., Yeh, H., Matsumotu, Y., Nakamura, M., Mahoi, M., Hill, P., Crook, K., Anton, L., and Walsh, J. P. (1999). Sediment slump likely caused 1998 Papua New Guinea tsunami. Eos, Transactions American Geophysical Union, 80(30), 329–344. https://doi.org/10.1029/99EO00241

Tsang, L. L. H., Meltzner, A. J., Philibosian, B., Hill, E. M., Freymueller, J. T., and Sieh, K. (2015). A 15 year slow-slip event on the Sunda megathrust offshore Sumatra. Geophysical Research Letters, 42, 6630–6638. https://doi.org/10.1002/2015GL064928

Waldhauser, F. (2001). hypoDD -- A program to compute double-difference hypocenter locations. In U.S. Geological Survey open-file report 01-113. Retrieved from https://pubs.usgs.gov/of/2001/0113/

Waldhauser, Felix, and Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006

Waldhauser, Felix, Schaff, D. P., Diehl, T., and Engdahl, E. R. (2012). Splay faults imaged by fluid-driven aftershocks of the 2004 Mw 9.2 Sumatra-Andaman earthquake. Geology, 40(3), 243–246. https://doi.org/10.1130/G32420.1

Wang, Xiaoming. (2009). User manual for COMCOT version 1.7 (First Draft), Cornell University.

Wang, Xiaoming, and Liu, P. L.-F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147–154. https://doi.org/10.1080/00221686.2006.9521671

Wang, Xin, Bradley, K. E., Wei, S., and Wu, W. (2018). Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling. Earth and Planetary Science Letters, 483, 29–38. https://doi.org/10.1016/j.epsl.2017.11.049

Ward, S. N. (2001). Landslide tsunami. Journal of Geophysical Research, 106(6), 11201–11215. https://doi.org/10.1029/2000JB900450

Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., and Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Science, 3, 391–402. https://doi.org/10.5194/nhess-3-391-2003

Wells, D. L., and Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

White, R. S., McKenzie, D., and O’nions, R. K. (1992). Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research, 97(B13), 19683–19715. https://doi.org/10.1029/92jb01749

Widiyantoro, S., and Hilst, R. van der. (1996). Structure and evolution of Lithospheric slab beneath the Sunda Arc, Indonesia. Science, 271(5255), 1566–1570. https://doi.org/10.1126/science.271.5255.1566

Wilson, C., and Linkie, M. (2012). The Panglima Laot of Aceh: a case study in large-scale community-based marine management after the 2004 Indian Ocean tsunami. Oryx, 46(4), 495–500. https://doi.org/10.1017/S0030605312000191

Wiseman, K., Banerjee, P., Bürgmann, R., Sieh, K., Dreger, D. S., and Hermawan, I. (2012). Source model of the 2009 M w 7.6 Padang intraslab earthquake and its effect on the Sunda megathrust. Geophysical Journal International, 190(3), 1710–1722. https://doi.org/10.1111/j.1365-246X.2012.05600.x

Yue, H., Lay, T., and Koper, K. D. (2012). En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes. Nature, 490(7419), 245–249. https://doi.org/10.1038/nature11492
指導教授 黃柏壽 溫國樑(Bor-Shouh Huang Kuo-Liang Wen) 審核日期 2019-12-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明