博碩士論文 104821002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:54.157.61.68
姓名 簡鈺真(Yu-Chen Chien)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 酵母菌粒線體內Gln-tRNAGln的合成機制
(Gln-tRNAGln formation in yeast mitochondria)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ 探討Alanyl-tRNA synthetase的演化及專一性★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討
★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能★ 探討酵母菌Valyl-tRNA synthetase的生化活性
★ 酵母菌轉譯起始機制的研究★ 酵母菌GRS1基因的轉譯起始機制之研究
★ 探討酵母菌ALA1基因的non-AUG轉譯機制★ 酵母菌 alanyl-tRNA synthetase 的細胞內傳輸機制
★ 鑑定酵母菌中具高親和力的tRNA結合蛋白★ 酵母菌ALA1基因的表現調控機制
★ 酵母菌ALA1 基因轉譯起始機制的研究★ 探討一個真核tRNA合成酶的附加區段之轉錄活化活性
★ 一個雙重功能的酵母菌 tRNA 合成酶之研究★ 探討酵母菌中non-AUG起始點的周邊序列對轉譯起始效率的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-1-10以後開放)
摘要(中) 在蛋白質合成過程中,aminoacyl-tRNA synthetase (aaRS)將胺基酸接到相對應的tRNA形成aa-tRNA,接著aa-tRNA被送到核醣體進行轉譯作用。在酵母菌細胞質中,Gln-tRNAGln是藉由直接路徑合成(Gln + tRNAGln → Gln-tRNAGln),而在粒線體內則是藉由間接路徑合成Gln-tRNAGln,首先利用glutamyl-tRNA synthetase (GluRSc)催化合成Glu-tRNAGln,接著再用轉胺酶(GluAdT或GatFAB)催化合成Gln-tRNAGln。奇怪的是在酵母菌Schizosaccharomyces pombe粒線體中,我們可以找到GatA及GatB的同源基因,卻找不到GatF的同源基因。藉由GatB-TAP的蛋白質體外結合實驗及LC/MS/MS分析,我們找到一個大小約14 kDa的蛋白質(SPCC777.11) (稱為GatX),GatX與GatF在序列上差異頗大,且缺少一段N端序列。GatX是一個粒線體蛋白質,且會與GatA、GatB、GluRSc有交互作用,在細胞中是必要基因,因此在Sch. pombe中GatX可能取代S. cerevisiae中GatF的功能,成為轉胺酶複合體中的第三個次單元。論文的第二個部分,我們探討Arc1p的生物素化,Arc1p會與細胞質methionyl-tRNA synthetase (MetRSc)和GluRSc形成三元複合體,Arc1p不只幫助此二酵素進行胺醯化反應,也會調控它們在細胞內的分佈。我們發現:Arc1p的生物素化會受培養基中的生物素濃度調控,而且在Arc1p/GluRSc/MetRSc複合體中,與我們所想的不同,Arc1p生物素化的比例高達85%,從這邊的實驗中,似乎酵母菌不能藉由生物素化來調控Arc1p/GluRSc/MetRSc的複合體形成。
摘要(英) In protein synthesis, aminoacyl-tRNA synthetases (aaRS) charge amino acids to their cognate tRNAs to become aa-tRNAs. The aa-tRNA then localizes to ribosomes for translation. In the yeast cytoplasm, Gln-tRNAGln synthesis occurs via a direct pathway (Gln + tRNAGln → Gln-tRNAGln). However, Gln-tRNAGln is synthesized by an indirect pathway in mitochondria through mischarging by a non-discriminating glutamyl-tRNA synthetase (GluRSc) followed by transamidation via a specific Glu-tRNAGln amidotransferase (GluAdT or GatFAB). Strangely, while GatA and GatB orthologues were readily identified in Schizosaccharomyces pombe genome, no GatF orthologue was found. Using GatB-TAP pulldown assay by LC/MS/MS assays we identified a GatB-interacting protein with a molecular weight of 14 kD (SPCC777.11) (GatX). GatX and GatF diverge greatly in sequence similarity, with GatX lacking an N-terminal domain. GatX is an essential gene and its protein product is localized in mitochondria. Therefore, GatX may as the third subunit in the multiplex. In the second part of the study, we focused on Arc1p biotinylation in S. cerevisiae. The yeast cytoplasmic methionyl-tRNA synthetase (MetRSc) and GluRSc form a ternary complex with Arc1p, thus regulating both their aminoacylation activities and subcellular localization. We found that biotinylation of Arc1p was modulated by biotin concentration in the medium. Contrary by our belief, the biotinylation level of Arc1p in the complex is as high as 85%. These result suggest that biotinylation is not involved in Arc1p/GluRSc/MetRSc complex formation.
關鍵字(中) ★ Glu-tRNAGln 轉胺酶
★ 酵母菌
★ aaRS輔因子
★ 胺酰-tRNA合成酶
★ 生物素化
關鍵字(英) ★ Glu-tRNAGln amidotransferase
★ Schizosaccharomyces pombe
★ Arc1p
★ aminoacyl-tRNA synthetases
★ biotinylation
論文目次 中文摘要 i
ABSTRACT ii
誌謝 iii
目 錄 iv
圖 目 錄 vii
表 目 錄 viii
第一章 緒論 1
1.1 Aminoacyl-tRNA synthetases (aaRSs)的簡介 1
1.1.1 aaRS的功能 1
1.1.2. aaRS的分類 1
1.2 Glutamyl-tRNA synthetase (GluRS)的簡介 2
1.2.1 GluRS的生化特性 2
1.2.2 GluRS的演化起源 3
1.3 Arc1p的簡介 3
1.3.1 Arc1p的特性 3
1.3.1 Arc1p的生物素化後轉譯調控 3
1.4 Gln-tRNAGln的形成 4
1.4.1 Gln-tRNAGln的形成途徑:直接或間接路徑 4
1.4.2 Gln-tRNAGln的間接形成途徑 4
1.5 Glu-tRNAGln amidotransferase ( GluAdT;Glu-tRNAGln (轉胺酶)的生化特性 5
Glu-tRNAGln(轉胺酶)的生化特性 5
1.6 不同酵母菌株 5
1.6.1 Saccharomyces cerevisiae 6
1.6.2 Schizosaccharomyces pombe 6
1.7 研究目的 7
1.7.1 S. cerevisiae中Arc1p的生物素化是否會影響EMA複合體構型與功能 7
1.7.2 Sch. pombe的GluAdT 7
第二章 材料與方法 8
2.1菌株、載體及培養基 8
2.1.1 菌株、基因型及其來源 8
2.1.2 載體 8
2.1.3 培養基 9
2.2大腸桿菌勝任細胞的製備與轉型作用 11
2.2.1大腸桿菌勝任細胞的製備 11
2.2.2大腸桿菌勝任細胞的轉型作用 (transformation) 12
2.3酵母菌勝任細胞的製備與轉型作用 12
2.3.1酵母菌 (S.cerevisiae)勝任細胞的製備 12
2.3.2酵母菌(S.cerevisiae)勝任細胞的轉型作用 13
2.3.3 酵母菌 (Sch.pombe)勝任細胞的製備 13
2.3.4 酵母菌(Sch.pombe)勝任細胞的轉型作用 14
2.4質體之選殖 14
2.5點突變 (Site-directed Mutagenesis) 14
2.6功能性互補試驗 (Complementation)―測試細胞質功能 15
2.7 Sch. pombe 標記 (GFP-tagging) 菌株製備 16
2.8酵母菌菌落PCR 18
2.9酵母菌交配 (mating) 18
2.10蛋白質製備 (Protein preparation) 19
2.10.1 震盪純化法 19
2.10.2 三氯醋酸 (trichloroacetic acid) TCA變性純化法 20
2.11 SDS-PAGE之蛋白質分子量分析 21
2.12西方點墨法 (Western Blotting) 21
2.13酵母菌融合蛋白質的表現與純化 23
2.14醯化作用分析 25
2.15 移動轉移實驗( mobility shift assay) 26
第三章 實驗結果 27
3.1 GatXAB的交互作用 27
3.2 GatX、GatA、GatB的細胞分佈分析 27
3.3 GatX是否為必要的基因 28
3.4 GatX (SPCC77.11)之序列分析與演化關係 28
3.5 酵母菌細胞質內Arc1p與生物素化關係 29
3.5.1 Arc1p表現量及生物素化與細胞生長的關係 29
3.5.2壓力環境對Arc1p生物素化的影響 29
3.5.3 不同程度生物素化的Arc1p蛋白質 30
3.5.4 測定K86是否Arc1p上唯一的生物素化位置 31
3.6 生物素化與EMA複合體之間的關係 32
3.7 建構SpBpl1p取代ScBpl1p的酵母菌轉型株 32
3.8 Arc1p生物素化對於EMA複合物的活性影響 33
第四章 討論 34
4.1 Sch. pombe GluAdT的第三個次單元 34
4.2 S. cerevisiae中EMA複合體與Arc1p生物素化之間的關聯性 35
參考文獻 39
參考文獻 1. Arnez, J. G. and D. Moras (1997). "Structural and functional considerations of the aminoacylation reaction." Trends Biochem Sci 22(6): 211-216.
2. Asahara, H. and O. C. Uhlenbeck (2005). "Predicting the binding affinities of misacylated tRNAs for Thermus thermophilus EF-Tu.GTP." Biochemistry 44(33): 11254-11261.
3. Bhaskaran, H. and J. J. Perona (2011). "Two-step aminoacylation of tRNA without channeling in Archaea." J Mol Biol 411(4): 854-869.
4. Briede, J. J., J. M. van Delft, T. M. de Kok, M. H. van Herwijnen, L. M. Maas, R. W. Gottschalk and J. C. Kleinjans (2010). "Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells." Toxicol Sci 114(2): 193-203.
5. Bullock, T. L., A. Rodríguez-Hernández, E. M. Corigliano and J. J. Perona (2008). "A rationally engineered misacylating aminoacyl-tRNA synthetase." Proc Natl Acad Sci U S A 105(21): 7428-7433.
6. Burbaum, J. J. and P. Schimmel (1991). "Structural relationships and the classification of aminoacyl-tRNA synthetases." J Biol Chem 266(26): 16965-16968.
7. Cathopoulis, T. J., P. Chuawong and T. L. Hendrickson (2008). "Conserved discrimination against misacylated tRNAs by two mesophilic elongation factor Tu orthologs." Biochemistry 47(29): 7610-7616.
8. Chang, C. Y., C. P. Chang, S. Chakraborty, S. W. Wang, Y. K. Tseng and C. C. Wang (2016). "Modulating the Structure and Function of an Aminoacyl-tRNA Synthetase Cofactor by Biotinylation." J Biol Chem 291(33): 17102-17111.
9. Chikashige, Y., N. Kinoshita, Y. Nakaseko, T. Matsumoto, S. Murakami, O. Niwa and M. Yanagida (1989). "Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites." Cell 57(5): 739-751.
10. Curnow, A. W., K. Hong, R. Yuan, S. Kim, O. Martins, W. Winkler, T. M. Henkin and D. Soll (1997). "Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation." Proc Natl Acad Sci U S A 94(22): 11819-11826.
11. Cusack, S. (1997). "Aminoacyl-tRNA synthetases." Curr Opin Struct Biol 7(6): 881-889.Doolittle, W. F. (1999). "Phylogenetic classification and the universal tree." Science 284(5423): 2124-2129.
12. Echevarria, L., P. Clemente, R. Hernandez-Sierra, M. E. Gallardo, M. A. Fernandez-Moreno and R. Garesse (2014). "Glutamyl-tRNAGln amidotransferase is essential for mammalian mitochondrial translation in vivo." Biochem J 460(1): 91-101.
13. Feng, L., K. Sheppard, D. Tumbula-Hansen and D. Soll (2005). "Gln-tRNAGln formation from Glu-tRNAGln requires cooperation of an asparaginase and a Glu-tRNAGln kinase." J Biol Chem 280(9): 8150-8155.
14. Frechin, M., L. Enkler, E. Tetaud, D. Laporte, B. Senger, C. Blancard, P. Hammann, G. Bader, S. Clauder-Munster, L. M. Steinmetz, R. P. Martin, J. P. di Rago and H. D. Becker (2014). "Expression of nuclear and mitochondrial genes encoding ATP synthase is synchronized by disassembly of a multisynthetase complex." Mol Cell 56(6): 763-776.
15. Frechin, M., D. Kern, R. P. Martin, H. D. Becker and B. Senger (2010). "Arc1p: anchoring, routing, coordinating." FEBS Lett 584(2): 427-433.
16. Frechin, M., B. Senger, M. Braye, D. Kern, R. P. Martin and H. D. Becker (2009). "Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS." Genes Dev 23(9): 1119-1130.
17. Friedman, P. A. and M. A. Shia (1977). "The apparent absence of involvement of biotin in the vitamin K-dependent carboxylation of glutamic acid residues of proteins." Biochem J 163(1): 39-43.
18. Galibert, F., D. Alexandraki, A. Baur, E. Boles, N. Chalwatzis, J. C. Chuat, F. Coster, C. Cziepluch, M. De Haan, H. Domdey, P. Durand, K. D. Entian, M. Gatius, A. Goffeau, L. A. Grivell, A. Hennemann, C. J. Herbert, K. Heumann, F. Hilger, C. P. Hollenberg, M. E. Huang, C. Jacq, J. C. Jauniaux, C. Katsoulou, L. Karpfinger-Hartl and et al. (1996). "Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X." EMBO J 15(9): 2031-2049.
19. Graindorge, J. S., B. Senger, D. Tritch, G. Simos and F. Fasiolo (2005). "Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity." Biochemistry 44(4): 1344-1352.
20. Hadd, A. and J. J. Perona (2014). "Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases." J Mol Biol 426(21): 3619-3633.
21. Halawani, D., V. Gogonea, J. A. DiDonato, V. Pipich, P. Yao, A. China, C. Topbas, K. Vasu, A. Arif, S. L. Hazen and P. L. Fox (2018). "Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains." J Biol Chem 293(23): 8843-8860.
22. Hassan, Y. I., H. Moriyama, L. J. Olsen, X. Bi and J. Zempleni (2009). "N- and C-terminal domains in human holocarboxylase synthetase participate in substrate recognition." Mol Genet Metab 96(4): 183-188.
23. Ibba, M. and D. Soll (2000). "Aminoacyl-tRNA synthesis." Annu Rev Biochem 69: 617-650.
24. Ito, T. and S. Yokoyama (2010). "Two enzymes bound to one transfer RNA assume alternative conformations for consecutive reactions." Nature 467(7315): 612-616.
25. Karanasios, E. and G. Simos (2010). "Building arks for tRNA: structure and function of the Arc1p family of non-catalytic tRNA-binding proteins." FEBS Lett 584(18): 3842-3849.
26. Koehler, C., A. Round, H. Simader, D. Suck and D. Svergun (2013). "Quaternary structure of the yeast Arc1p-aminoacyl-tRNA synthetase complex in solution and its compaction upon binding of tRNAs." Nucleic Acids Res 41(1): 667-676.
27. Lapointe, J., L. Duplain and M. Proulx (1986). "A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro." J Bacteriol 165(1): 88-93.
28. Liao, C. C., C. H. Lin, S. J. Chen and C. C. Wang (2012). "Trans-kingdom rescue of Gln-tRNAGln synthesis in yeast cytoplasm and mitochondria." Nucleic Acids Res 40(18): 9171-9181.
29. Mirande, M. (1991). "Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications." Prog Nucleic Acid Res Mol Biol 40: 95-142.
30. Mirande, M., Y. Gache, D. Le Corre and J. P. Waller (1982). "Seven mammalian aminoacyl-tRNA synthetases co-purified as high molecular weight entities are associated within the same complex." EMBO J 1(6): 733-736.
31. Mitchison, J. M. (1957). "The growth of single cells. I. Schizosaccharomyces pombe." Exp Cell Res 13(2): 244-262.
32. Perona, J. J., M. A. Rould and T. A. Steitz (1993). "Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase." Biochemistry 32(34): 8758-8771.
33. Pujol, C., M. Bailly, D. Kern, L. Marechal-Drouard, H. Becker and A. M. Duchene (2008). "Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants." Proc Natl Acad Sci U S A 105(17): 6481-6485.
34. Ribas de Pouplana, L. and P. Schimmel (2001). "Aminoacyl-tRNA synthetases: potential markers of genetic code development." Trends Biochem Sci 26(10): 591-596.
35. Ribas de Pouplana, L., R. J. Turner, B. A. Steer and P. Schimmel (1998). "Genetic code origins: tRNAs older than their synthetases?" Proc Natl Acad Sci U S A 95(19): 11295-11300.
36. Rinehart, J., B. Krett, M. A. Rubio, J. D. Alfonzo and D. Söll (2005). "Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion." Genes Dev 19(5): 583-592.
37. Rodríguez-Hernández, A., H. Bhaskaran, A. Hadd and J. J. Perona (2010). "Synthesis of Glu-tRNA(Gln) by engineered and natural aminoacyl-tRNA synthetases." Biochemistry 49(31): 6727-6736.
38. Rogers, K. C. and D. Soll (1995). "Divergence of glutamate and glutamine aminoacylation pathways: providing the evolutionary rationale for mischarging." J Mol Evol 40(5): 476-481.
39. Saha, R., S. Dasgupta, G. Basu and S. Roy (2009). "A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution." Biochem J 417(2): 449-455.
40. Schimmel, P. (1987). "Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs." Annu Rev Biochem 56: 125-158.
41. Schimmel, P. and E. Schmidt (1995). "Making connections: RNA-dependent amino acid recognition." Trends Biochem Sci 20(1): 1-2.
42. Sekine, S., O. Nureki, D. Y. Dubois, S. Bernier, R. Chênevert, J. Lapointe, D. G. Vassylyev and S. Yokoyama (2003). "ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding." EMBO J 22(3): 676-688.
43. Sheppard, K., P. M. Akochy, J. C. Salazar and D. Soll (2007). "The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln." J Biol Chem 282(16): 11866-11873.
44. Shiba, K., T. Stello, H. Motegi, T. Noda, K. Musier-Forsyth and P. Schimmel (1997). "Human lysyl-tRNA synthetase accepts nucleotide 73 variants and rescues Escherichia coli double-defective mutant." J Biol Chem 272(36): 22809-22816.
45. Simos, G., A. Sauer, F. Fasiolo and E. C. Hurt (1998). "A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases." Mol Cell 1(2): 235-242.
46. Simos, G., H. Tekotte, H. Grosjean, A. Segref, K. Sharma, D. Tollervey and E. C. Hurt (1996). "Nuclear pore proteins are involved in the biogenesis of functional tRNA." EMBO J 15(9): 2270-2284.
47. Sprinzl, M. and F. Cramer (1975). "Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2′- or 3′-hydroxyl group of the terminal adenosine." Proc Natl Acad Sci U S A 72(8): 3049-3053.
48. Tanaka, H., G. H. Ryu, Y. S. Seo, K. Tanaka, H. Okayama, S. A. MacNeill and Y. Yuasa (2002). "The fission yeast pfh1(+) gene encodes an essential 5′ to 3′ DNA helicase required for the completion of S-phase." Nucleic Acids Res 30(21): 4728-4739.
49. Wolf, Y. I., L. Aravind, N. V. Grishin and E. V. Koonin (1999). "Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events." Genome Res 9(8): 689-710.
50. Wood, V., R. et al. (2002). "The genome sequence of Schizosaccharomyces pombe." Nature 415(6874): 871-880.
51. Zimmer, M., F. Welser, G. Oraler and K. Wolf (1987). "Distribution of mitochondrial introns in the species Schizosaccharomyces pombe and the origin of the group II intron in the gene encoding apocytochrome b." Curr Genet 12(5): 329-336.
指導教授 王健家(Chien-Chia Wang) 審核日期 2019-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明