博碩士論文 104821004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:54.227.6.156
姓名 黃詠琪(Yung-Chi Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 基於半胱氨酸的水凝膠與銅離子結合以抵抗USA300耐甲氧西林金黃色葡萄球菌作為有效的傷口敷料
(cysteine-based hydrogel bind with copper ions to against USA300 Methicillin-Resistant Staphylococcus aureus as effective wound dressings)
相關論文
★ 從人類皮膚微生物總體中鑑定溶解磷酸鈣的細菌★ 皮膚表皮葡萄球菌透過發酵抑制紅色毛癬菌之研究
★ 建立人類皮膚益生微生物菌組銀行★ The study of in vitro and in vivo fermentation of bacteria in the skin microbiome
★ 藉由金黃色葡萄球菌增加抗體的產生來對抗痤瘡丙酸桿菌,用以增進痤瘡之治療★ 共生菌痤瘡丙酸桿菌之葡萄糖發酵在小鼠中磷酸鈣誘導之搔癢以及促發炎介白素-6的產生上的效果。
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 先前的研究中發現,耐甲氧西林金黃色葡萄球菌(金黃色葡萄球菌)(MRSA)是膿性皮膚和軟組織感染最常見的原因。儘管抗生素已被廣泛用於治療MRSA的皮膚感染,但是不適當地使用抗生素會有非常大的風險產生具有抗藥藥性金黃色葡萄球菌。因此我們開發了可以吸收和釋放銅離子的水膠,一種具有抑制USA300(一種社區型MRSA)生長能力的半胱氨酸水凝膠。傅里葉變換紅外光譜(FTIR)分析的結果表明以半胱氨酸為基材的水膠與銅離子間具有相互作用。在應用方面,具有半胱氨酸水膠與銅結合到ICR小鼠背部皮膚上的USA 300感染皮膚上顯著增強傷口癒合,阻礙USA300的生長,並減少促炎症巨噬細胞炎症蛋白2- α(MIP-2)細胞因子。我們的研究成功完成一種水膠具有與銅離子結合的功能,並可抑制微生物的生長,做為一種新式的傷口敷料。
摘要(英) The methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) is reported as the most common cause of purulent skin and soft tissue infections. Although antibiotics have been widely used for treatment of skin infection of MRSA, but the inappropriate use of antibiotics runs a considerable risk of generating resistant S. aureus. Here we develop a cysteine-capped hydrogel which can absorb and release copper, an ion with the capability of suppressing the growth of USA300, a community-acquired MRSA. Results from the analysis of fourier transform infrared spectroscopy (FTIR) indicate the interaction of a cysteine-capped hydrogel with copper. Topical application of a cysteine-capped hydrogel binding with copper onto a USA300-infected skin wound in the dorsal skin of ICR mice significantly enhance the wound healing, hinder the growth of USA300, and reduce the production of pro-inflammatory macrophage inflammatory protein 2-alpha (MIP-2) cytokine. Our work demonstrates a newly designed hydrogel which conjugates a cysteine molecule for copper binding. The cysteine-capped hydrogel potentially can chelate various antimicrobial metals as a novel wound dressing.
關鍵字(中) ★ 水膠
★ 銅離子
★ 傷口敷料
★ 抗菌
★ 釋放
關鍵字(英) ★ hydrogel
★ copper ion
★ wound dressing
★ antibacterial
★ release
論文目次 摘要 VI
ABSTRACT VII
謝誌 VIII
目錄 IX
圖目錄 XII
表目錄 XIV
第一章、 緒論 1
1-1抗耐甲氧西林金黃色葡萄球菌 (METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS,MRSA) 1
1-2皮膚 2
1-2-1皮膚的結構及功能 2
1-2-2皮膚傷口癒合過程 4
1-3金屬離子-銅(copper) 8
1-4敷料(DRESSING) 9
1-4-1敷料之演進 9
1-4-2敷料的使用與類型 [39] 11
1-5水膠(HYDROGEL) 12
1-5-1水膠的簡介 12
1-5-2智慧型水膠 [46] 13
1-6帶有硫醇基分子的天然胺基酸兩性雙離子 14
1-7金屬離子與高分子材料螯合 16
第二章、研究目標 18
第三章、實驗方法 19
3-1材料 19
3-2實驗儀器 20
3-3半胱氨酸甲基丙烯酸酯 (CYSTEINE METHACRYLATE,CYSMA)/氯化銅水膠製備流程 21
3-3-1半胱氨酸甲基丙烯酸酯 (Cysteine Methacrylate,CysMA)合成 21
3-3-2半胱氨酸甲基丙烯酸酯/氯化銅水膠 21
3-3-3甲基丙烯酸3-(丙烯酰氧基)-2-羥丙酯/氯化銅水膠 22
3-4 FTIR光譜分析 22
3-5水膠釋放銅離子 22
3-6抑菌圈試驗 23
3-8傷口感染動物實驗模式 23
3-8-1傷口大小 23
3-8-2 Bacterial counting 24
3-8-3 MIP-2 24
第四章、結果與討論 26
4-1半胱氨酸甲基丙烯酸酯 (CYSTEINE METHACRYLATE,CYSMA)單體的製備 26
4-2 水膠的表觀 27
4-2-1 CysMA 水膠 27
4-2-2 MA水膠 28
4-3 水膠的吸收及釋放 29
4-3-2 CysMA水膠吸收及釋放 29
4-3-2 MA水膠吸收及釋放 29
4-4FTIR 分析 33
4-5抗菌試驗 35
4-6 傷口感染動物實驗模式 38
4-6-1 傷口面積測定 38
4-6-2 Bacterial counting 40
4-6-3酵素免疫分析法 42
第五章、結論 43
第六章、參考文獻 45
參考文獻

[1] F.C. Tenover, R.V. Goering, Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology, Journal of Antimicrobial Chemotherapy, 64 (2009) 441-446.
[2] I. Pastar, A.G. Nusbaum, J. Gil, S.B. Patel, J. Chen, J. Valdes, O. Stojadinovic, L.R. Plano, M. Tomic-Canic, S.C. Davis, Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection, PloS one, 8 (2013) e56846.
[3] E.V. Kourbatova, J.S. Halvosa, M.D. King, S.M. Ray, N. White, H.M. Blumberg, Emergence of community-associated methicillin-resistant Staphylococcus aureus USA 300 clone as a cause of health care-associated infections among patients with prosthetic joint infections, American journal of infection control, 33 (2005) 385-391.
[4] S. Boyle-Vavra, R.S. Daum, Community-acquired methicillin-resistant Staphylococcus aureus: the role of Panton-Valentine leukocidin, Laboratory investigation, 87 (2007) 3.
[5] Y. Chen, L. Yan, T. Yuan, Q. Zhang, H. Fan, Asymmetric polyurethane membrane with in situ‐generated nano‐TiO2 as wound dressing, Journal of Applied Polymer Science, 119 (2011) 1532-1541.
[6] F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, K. Schenke-Layland, Skin tissue engineering—in vivo and in vitro applications, Advanced drug delivery reviews, 63 (2011) 352-366.
[7] I. Yannas, J.F. Burke, Design of an artificial skin. I. Basic design principles, Journal of Biomedical Materials Research Part A, 14 (1980) 65-81.
[8] B.A. Mast, L.C. Flood, J.H. Haynes, R.L. Depalma, I.K. Cohen, R.F. Diegelmann, T.M. Krummel, Hyaluronic acid is a major component of the matrix of fetal rabbit skin and wounds: implications for healing by regeneration, Matrix, 11 (1991) 63-68.
[9] S. Enoch, P. Price, Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds and wounds in the aged, World Wide Wounds, 13 (2004) 1-16.
[10] K. NIGEL, M. MAKRIS, D. O′SHAUGHNESSY, Practical hemostasis and thrombosis, WILEY—BLACKEI I, 2009.
[11] K. Murugesan, G.S. Kumar, P.S. Devi, T. Westrick, C. Cundiff, Blog Archives, Biol, 4150 6150.
[12] S.R. Sandeman, M.C. Allen, C. Liu, R.G. Faragher, A.W. Lloyd, Human keratocyte migration into collagen gels declines with in vitro ageing, Mechanisms of ageing and development, 119 (2000) 149-157.
[13] B. Du, Z. Bian, B. Xu, Skin Health Promotion Effects of Natural Beta‐Glucan Derived from Cereals and Microorganisms: A Review, Phytotherapy Research, 28 (2014) 159-166.
[14] J.A. Onah, C.A. Eze, P.E. Aba, S.V. Shoyinka, Histopathology assessment of incisional wound-healing behaviour of peritoneum-sutured and not-sutured techniques following laparotomy and omentopexy in West African dwarf (WAD) goats, Comparative Clinical Pathology, 24 (2015) 317-322.
[15] J. De la Torre, A. Sholar, Wound healing: Chronic wounds, Emedicine. com. Accessed January, 20 (2006) 2008.
[16] P. Martin, S.J. Leibovich, Inflammatory cells during wound repair: the good, the bad and the ugly, Trends in cell biology, 15 (2005) 599-607.
[17] M.M. Santoro, G. Gaudino, Cellular and molecular facets of keratinocyte reepithelization during wound healing, Experimental cell research, 304 (2005) 274-286.
[18] W.M. Jackson, L.J. Nesti, R.S. Tuan, Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells, Stem cells translational medicine, 1 (2012) 44-50.
[19] P. Newton, J. Watson, R. Wolowacz, E. Wood, Macrophages restrain contraction of an in vitro wound healing model, Inflammation, 28 (2004) 207-214.
[20] R. Kuwahara, R. Rasberry, Chemical peels, Emedicine. com. Accessed September, 15 (2007) 2007.
[21] D.G. Greenhalgh, The role of apoptosis in wound healing, The international journal of biochemistry & cell biology, 30 (1998) 1019-1030.
[22] Y. Zhou, M. Xia, Y. Ye, C. Hu, Antimicrobial ability of Cu 2+-montmorillonite, Applied Clay Science, 27 (2004) 215-218.
[23] G. Borkow, J. Gabbay, Copper as a biocidal tool, Current medicinal chemistry, 12 (2005) 2163-2175.
[24] S.J. Stohs, D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free radical biology and medicine, 18 (1995) 321-336.
[25] P. Blackett, D. Lee, D. Donaldson, J. Fesmire, W. Chan, J. Holcombe, O. Rennert, Studies of lipids, lipoproteins, and apolipoproteins in Menkes′ disease, Pediatric research, 18 (1984) 864-870.
[26] P.C. Chan, O.G. Peller, L. Kesner, Copper (II)-catalyzed lipid peroxidation in liposomes and erythrocyte membranes, Lipids, 17 (1982) 331-337.
[27] J.R. Hazel, E.E. Williams, The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment, Progress in lipid research, 29 (1990) 167-227.
[28] N. Howlett, S. Avery, Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae, Applied microbiology and biotechnology, 48 (1997) 539-545.
[29] H. Elzanowska, R.G. Wolcott, D.M. Hannum, J.K. Hurst, Bactericidal properties of hydrogen peroxide and copper or iron-containing complex ions in relation to leukocyte function, Free Radical Biology and Medicine, 18 (1995) 437-449.
[30] G. Grass, C. Rensing, M. Solioz, Metallic copper as an antimicrobial surface, Applied and environmental microbiology, 77 (2011) 1541-1547.
[31] J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications, Nature Reviews Microbiology, 11 (2013) 371-384.
[32] S. Sider, Handbook to life in Renaissance Europe, Handbook to Life2007.
[33] N. Tomes, The private side of public health: sanitary science, domestic hygiene, and the germ theory, 1870-1900, Bulletin of the History of Medicine, 64 (1990) 509.
[34] H. Milton, Mediastinal surgery, The Lancet, 149 (1897) 872-875.
[35] G.F. Obland, The fine structure of the interrelationship of cells in the human epidermis, The Journal of Cell Biology, 4 (1958) 529-538.
[36] G.D. Winter, Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig, Nature, 193 (1962) 293-294.
[37] G.D. Winter, Effect of air exposure and occlusion on experimental human skin wounds, Nature, 200 (1963) 378-379.
[38] D.T. Rovee, Effect of local wound environment on epidermal healing, Epidermal wound healing, DOI (1972).
[39] J.S. Boateng, K.H. Matthews, H.N. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review, Journal of pharmaceutical sciences, 97 (2008) 2892-2923.
[40] A.J. Nemeth, W.H. Eaglstein, J.R. Taylor, L.J. Peerson, V. Falanga, Faster healing and less pain in skin biopsy sites treated with an occlusive dressing, Archives of dermatology, 127 (1991) 1679-1683.
[41] T.R. Dargaville, B.L. Farrugia, J.A. Broadbent, S. Pace, Z. Upton, N.H. Voelcker, Sensors and imaging for wound healing: a review, Biosensors and Bioelectronics, 41 (2013) 30-42.
[42] L.-Y. Chang, J.-Y. Yang, Clinical experience of postage stamp autograft with porcine skin onlay dressing in extensive burns, Burns, 24 (1998) 264-269.
[43] L. Harris, K. Gorna, S. Gogolewski, R. Richards, Biodegradable polyurethane cytocompatibility to fibroblasts and staphylococci, Journal of Biomedical Materials Research Part A, 77 (2006) 304-312.
[44] O. Wichterle, D. Lim, Hydrophilic gels for biological use, Nature, 185 (1960) 117-118.
[45] A.S. Hoffman, Hydrogels for biomedical applications, Advanced drug delivery reviews, 64 (2012) 18-23.
[46] X.-Z. Zhang, D.-Q. Wu, C.-C. Chu, Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels, Biomaterials, 25 (2004) 3793-3805.
[47] R. Dinarvand, A. D′Emanuele, The use of thermoresponsive hydrogels for on-off release of molecules, Journal of Controlled Release, 36 (1995) 221-227.
[48] L. Brannon-Peppas, N.A. Peppas, Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate, Biomaterials, 11 (1990) 635-644.
[49] J. Ostroha, M. Pong, A. Lowman, N. Dan, Controlling the collapse/swelling transition in charged hydrogels, Biomaterials, 25 (2004) 4345-4353.
[50] R.E. Holmlin, X. Chen, R.G. Chapman, S. Takayama, G.M. Whitesides, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer, Langmuir, 17 (2001) 2841-2850.
[51] R.F. Zwaal, A.J. Schroit, Pathophysiologic implications of membrane phospholipid asymmetry in blood cells, Blood, 89 (1997) 1121-1132.
[52] E.R. Brisson, Z. Xiao, L.A. Connal, Amino Acid Functional Polymers: Biomimetic Polymer Design Enabling Catalysis, Chiral Materials, and Drug Delivery, Australian Journal of Chemistry, 69 (2016) 705-716.
[53] A. Shen, Z. Guo, X. Cai, X. Xue, X. Liang, Preparation and chromatographic evaluation of a cysteine-bonded zwitterionic hydrophilic interaction liquid chromatography stationary phase, Journal of Chromatography A, 1228 (2012) 175-182.
[54] H.B. GDR, N. SHARON, E.W. Australia, NOMENCLATURE AND SYMBOLISM FOR AMINO ACIDS AND PEPTIDES, DOI.
[55] A.M. Alswieleh, N. Cheng, I. Canton, B. Ustbas, X. Xue, V. Ladmiral, S. Xia, R.E. Ducker, O. El Zubir, M.L. Cartron, Zwitterionic Poly (amino acid methacrylate) Brushes, Journal of the American Chemical Society, 136 (2014) 9404-9413.
[56] K.-T. Huang, Y.-L. Fang, P.-S. Hsieh, C.-C. Li, N.-T. Dai, C.-J. Huang, Zwitterionic nanocomposite hydrogels as effective wound dressings, Journal of Materials Chemistry B, 4 (2016) 4206-4215.
[57] K.-T. Huang, C.-J. Huang, Novel Zwitterionic Nanocomposite Hydrogel as Effective Chronic Wound Healing Dressings, 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering, Springer, 2015, pp. 35-38.
[58] M. Shu, Y. Wang, J. Yu, S. Kuo, A. Coda, Y. Jiang, R.L. Gallo, C.-M. Huang, Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus, PloS one, 8 (2013) e55380.
[59] Y. Wang, S. Kuo, M. Shu, J. Yu, S. Huang, A. Dai, R.L. Gallo, C.-M. Huang, Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris, Applied microbiology and biotechnology, 98 (2014) 411.
[60] J. Romanski, M. Karbarz, K. Pyrzynska, J. Jurczak, Z. Stojek, Polymeric hydrogels modified with ornithine and lysine: Sorption and release of metal cations and amino acids, Journal of Polymer Science Part A: Polymer Chemistry, 50 (2012) 542-550.
[61] T. Trejos, W. Castro, J.R. Almirall, Elemental Analysis of Glass and Paint Materials by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) for Forensic Application, US Department of Justice, Miami, Florida, DOI (2006).
[62] P. Ndokoye, J. Ke, J. Liu, Q. Zhao, X. Li, L-Cysteine-modified gold nanostars for SERS-based copper ions detection in aqueous media, Langmuir, 30 (2014) 13491-13497.
[63] L. Li, B. Li, Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes, Analyst, 134 (2009) 1361-1365.
[64] M. Andjelković, J. Van Camp, B. De Meulenaer, G. Depaemelaere, C. Socaciu, M. Verloo, R. Verhe, Iron-chelation properties of phenolic acids bearing catechol and galloyl groups, Food Chemistry, 98 (2006) 23-31.
[65] S.M. Kang, S. Park, D. Kim, S.Y. Park, R.S. Ruoff, H. Lee, Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Mussel‐Inspired Chemistry, Advanced Functional Materials, 21 (2011) 108-112.
[66] W. Klinkajon, P. Supaphol, Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings, Biomedical Materials, 9 (2014) 045008.
[67] 姚淑滿, 陳英彥, 鄭麗容, 周振英, 腦膜炎變球菌 (Neisseria meningitidis) 之抗藥趨勢, 疫情報導, 20 (2004) 245-253.
[68] R. Bywater, M. McConville, I. Phillips, T. Shryock, The susceptibility to growth-promoting antibiotics of Enterococcus faecium isolates from pigs and chickens in Europe, Journal of Antimicrobial Chemotherapy, 56 (2005) 538-543.
[69] Z. Gitai, W.Y. Timothy, E.A. Lundquist, M. Tessier-Lavigne, C.I. Bargmann, The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC-115/AbLIM, Neuron, 37 (2003) 53-65.
指導教授 黃俊銘(Chun-MIng Huang) 審核日期 2017-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明