博碩士論文 104821007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.128.199.210
姓名 戴愷頫(Kai-Fu Tai)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 嗜酸熱硫化葉菌中去氧核醣核酸結合蛋白Saci_1212之結構性及功能性分析
(Structural and Functional Analysis of the DNA Binding Protein Saci_1212 from the Hyperthermophile Sulfolobus acidocaldarius)
相關論文
★ 硫化屬古生菌中的酮醇酸還原異構酶結構分析★ 古生菌嗜酸熱硫化葉菌的乙醯乳酸還原異構酶的晶體結構以及穩定性
★ 硫化葉菌屬中耐熱酮醇酸還原異構酶之結構性及功能性分析★ 嗜酸熱硫化葉菌的DNA結合蛋白Saci_0101之結構與功能分析
★ PDCD5蛋白在Sulfolobus solfataricus 古生菌的結構與功能分析★ 硫磺礦硫化葉菌程序性細胞死亡蛋白5晶體結構分析及其與DNA的相互作用
★ 嗜酸熱硫化葉菌中DNA結合蛋白Sac10b之結構分析及其與DNA相互作用★ 嗜酸熱硫化葉菌酮醇酸還原異構酶與輔酶共晶體結構及活性分析
★ 脂肪酸特異互養棲熱菌酮醇酸還原異構酶之晶體結構及活性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在生物體中,去氧核醣核酸需要被纏繞保存,真核生物以組蛋白作為纏繞核酸的工具,在古生菌中,則有一群分子量7到10 KDa的蛋白質作類似的用途,稱之為「類組蛋白」蛋白質。Sso7c4是硫磺礦硫化葉菌中一個已知的「類組蛋白」蛋白質,本研究的目標蛋白質Saci_1212,則是Sso7c4在嗜酸熱硫化葉菌中的同源蛋白。在先前的研究中已經得知Sso7c4的C端序列(LKEPWK),但正電且結構彈性,會參與去氧核醣核酸的作用。而有趣的是Saci_1212整體結構雖與Sso7c4相似,但C端蛋白質序列(TEEELR)卻帶有3個帶負電荷的麩胺酸殘基,與去氧核醣核酸的電性相排斥。
在本研究中,我們以X光蛋白質晶體繞射的技術得到解析度2.09 埃的Saci_1212蛋白質晶體結構。結構與Sso7c4相似,有著β-loop-β的結構為主體,這樣的折疊構型也與細菌的轉錄調控因子AbrB及 MazE之N端去氧核醣核酸結合區域的結構相似。在蛋白質結構的C端,Sso7c4是一個有彈性的手臂,沒有固定構型;Saci_1212則以三個麩胺酸殘基形成310¬-螺旋的結構,與Sso7c4完全不同。後續以電子顯微鏡拍攝Saci_1212原生型及C端刪除型兩種蛋白質分別以不同的比例與質體PhiX174 RF II DNA作用之影像。從影像分析,得知Saci_1212不同於Sso7c4,不會與去氧核醣核酸有架橋的作用;質體長度並無顯著縮短也顯示它不是一個彎曲者或纏繞者。與C端刪除型相比,原生型完全沒有架橋行為,C端刪除型則有局部架橋,顯示帶負電的C端序列會減少對DNA架橋效應的發生;又根據螢光極化分析的結果,Saci_1212之C端序列刪除後與去氧核醣核酸的結合力上升了20倍,顯示該C端序列降低了整體的結合力,但比較Saci_1212與同源蛋白質Sso7c4的C端刪除型,前者的結合力是後者的24倍,可能有與其他轉錄調控因子競爭去氧核醣核酸結合位的能力,故推測Saci_1212是一個基因轉錄的負調控因子。
摘要(英)
Saci_1212 protein, a Sso7c4 homologue, is commonly believed to be a histone-like protein involved in genomic DNA compaction from Sulfolobus acidocaldarius. Although sequence alignments share high similarity (Saci_1212 vs Sso7c4: 66% identity), their C-termini are quite different in amino acid level. In previous study, we have been demonstrated that basic and flexible C-terminal ends of Sso7c4 (LKEPWK) are involved in binding and bending DNA whereas C-terminus of Saci_1212 (TEEELR) contains three glutamate residues which disfavor to interact with DNA due to the negative charge repulsions.
Here, to obtain a detailed understanding of its architectural properties, we present the crystal structure of wild type Saci_1212 at 2.09 Å resolution. The overall structure of Saci_1212 is similar to Sso7c4 which forms a swapped β-loop-β ′Yin-Yang′ topology. This fold resembles the N-terminal DNA-binding domain of both AbrB and MazE, which are transcriptional regulators in bacteria. The two basic C-termini of Sso7c4 are disordered owing to a lack of corresponding density in the crystal. However, the two C-termini of Saci_1212 adopt the 310-helical conformation by three glutamate residues. Two C-termini of Saci_1212 are quite different from that of Sso7c4 either in amino acid sequence or secondary structure. In fluorescence polarization binding assays, C-terminally truncated proteins exhibited higher binding affinity to 20-bp DNA than the wild-type protein to approximately 20-fold. These FP data further show that the C-terminal ends of Saci_1212 decrease the interaction with DNA. As shown in electron microscopy (EM) images, wild-type Sso7c4 compacts DNA through bridging and bending interactions, whereas the Saci_1212 protein binds DNA without any bridging phenomenon and no compaction of the DNA occurs. A functional role for Saci_1212 as negative transcriptional regulator is suggested.
關鍵字(中) ★ 去氧核醣核酸結合蛋白
★ 嗜酸熱硫化葉菌
★ X射線晶體學
★ 電子顯微鏡
關鍵字(英) ★ DNA binding protein
★ Sulfolobus acidocaldarius
★ X-ray Crystallography
★ Electron Microscope
論文目次
中文摘要...i
Abstract...ii
致謝...iii
目錄...iv
圖目錄...vi
表目錄...vii
一、緒論...1
1-1 菌種...1
1-1-1 古細菌域(Domain Archaea)...1
1-1-2 古生菌硫化葉菌屬...2
1-2 DNA結合蛋白...3
1-2-1 古細菌中的DNA結合蛋白...3
1-2-2 蛋白質Sso7c4和蛋白質Saci_1212...4
1-2-3 DNA結合蛋白質的構築功能...6
1-3 研究動機...7
二、方法與材料...8
2-1建構目標蛋白質基因與載體...8
2-1-1聚合酶鏈鎖反應引子 (PCR primer) 設計...8
2-1-2聚合酶鏈鎖反應擴增目標基因...9
2-1-3利用膠體電泳確認目標基因片段...10
2-1-4純化基因片段...10
2-1-5建構表現質體...11
2-1-6轉型作用 (Transformation)...12
2-1-7基因定序...12
2-2目標蛋白質大量表現...14
2-2-1測試最佳表現條件...14
2-2-2聚丙烯醯胺膠體電泳(SDS Poly-acrylamide-gel-electrophoresis, SDS-PAGE)...14
2-2-3蛋白質大量表現...15
2-2-4純化目標蛋白質...15
2-3晶體形成...17
2-3-1預結晶試驗(PCT, Pre-Crystallization Test)...18
2-3-2蛋白質結晶條件篩選...19
2-4 X光繞射與結構解析...20
2-4-1收集X光繞射數據...20
2-4-2解決相位問題...20
2-4-3結構的建立與優化...21
2-5突變-C端刪除...21
2-6 利用電子顯微鏡(Electron Microscope)觀察蛋白質與DNA結合機制...22
2-7螢光極化分析(Fluorescence polarization Assay)...23
三、結果...24
3-1建構目標蛋白質基因與載體...24
3-2蛋白質表現條件測試...24
3-3測試蛋白質耐熱特性...25
3-4利用陽離子交換樹脂管柱SP column純化蛋白質...26
3-5蛋白質結晶條件篩選...27
3-6蛋白質Saci_1212之結構描述...28
3-7蛋白質與DNA作用機制分析...33
3-8螢光極化分析...34
四、討論...35
4-1 Saci_1212之結構分析...35
4-2電子顯微鏡影像分析...36
4-3螢光極化分析...38
五、參考文獻...39
參考文獻
1. She, Q., et al., The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A, 2001. 98(14): p. 7835-40.
2. Chen, L., et al., The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol, 2005. 187(14): p. 4992-9.
3. Agback, P., et al., Architecture of nonspecific protein-DNA interactions in the Sso7d-DNA complex. Nat Struct Biol, 1998. 5(7): p. 579-84.
4. Gao, Y.G., et al., The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Nat Struct Biol, 1998. 5(9): p. 782-6.
5. Wardleworth, B.N., et al., Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO J, 2002. 21(17): p. 4654-62.
6. Hsu, C.H. and A.H. Wang, The DNA-recognition fold of Sso7c4 suggests a new member of SpoVT-AbrB superfamily from archaea. Nucleic Acids Res, 2011. 39(15): p. 6764-74.
7. Lin, B.L., et al., The Arginine Pairs and C-Termini of the Sso7c4 from Sulfolobus solfataricus Participate in Binding and Bending DNA. PLoS One, 2017. 12(1): p. e0169627.
8. Nightingale, K., et al., Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. EMBO J, 1996. 15(3): p. 548-61.
9. Swinger, K.K. and P.A. Rice, IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol, 2004. 14(1): p. 28-35.
10. Schneider, R., et al., An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res, 2001. 29(24): p. 5107-14.
11. Rimsky, S., Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol, 2004. 7(2): p. 109-14.
12. Luijsterburg, M.S., et al., The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol, 2008. 43(6): p. 393-418.
13. Adachi, H., et al., Application of a two-liquid system to sitting-drop vapour-diffusion protein crystallization. Acta Crystallographica Section D, 2003. 59: p. 194-196.
14. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 1997. 276: p. 307-26.
15. Winn, M.D., et al., Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 235-42.
16. Langer, G., et al., Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc, 2008. 3(7): p. 1171-9.
17. Emsley, P., et al., Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 4): p. 486-501.
18. Murshudov, G.N., et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 355-67.
19. Griffith, J.D. and G. Christiansen, Electron microscope visualization of chromatin and other DNA-protein complexes. Annu Rev Biophys Bioeng, 1978. 7: p. 19-35.
20. Hartig, S.M., Basic image analysis and manipulation in ImageJ. Curr Protoc Mol Biol, 2013. Chapter 14: p. Unit14 15.
21. Zorzini, V., et al., Escherichia coli antitoxin MazE as transcription factor: insights into MazE-DNA binding. Nucleic Acids Res, 2015. 43(2): p. 1241-56.
22. Vaughn, J.L., et al., Novel DNA binding domain and genetic regulation model of Bacillus subtilis transition state regulator abrB. Nat Struct Biol, 2000. 7(12): p. 1139-46.
23. Albright, R.A. and B.W. Matthews, How Cro and lambda-repressor distinguish between operators: the structural basis underlying a genetic switch. Proc Natl Acad Sci U S A, 1998. 95(7): p. 3431-6.
24. Beamer, L.J. and C.O. Pabo, Refined 1.8 A crystal structure of the lambda repressor-operator complex. J Mol Biol, 1992. 227(1): p. 177-96.
25. Clarke, N.D., et al., The DNA binding arm of lambda repressor: critical contacts from a flexible region. Science, 1991. 254(5029): p. 267-70.
26. Albright, R.A. and B.W. Matthews, Crystal structure of lambda-Cro bound to a consensus operator at 3.0 A resolution. J Mol Biol, 1998. 280(1): p. 137-51.
27. Hubbard, A.J., et al., Role of the Cro repressor carboxy-terminal domain and flexible dimer linkage in operator and nonspecific DNA binding. Biochemistry, 1990. 29(39): p. 9241-9.
指導教授 陳青諭(Chin-Yu Chen) 審核日期 2017-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明