博碩士論文 104821013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:54.145.45.143
姓名 王方宗(Fang-Zong Wang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 4-Aminobiphenyl 調控 miR-630 抑制 RAD18 表現誘導 Hep3B 細胞產生氧化性 DNA 損傷
(The microRNA-630 is involved in oxidative DNA damage in 4-aminobiphenyl-treated Hep3B cells via downregulation RAD18)
相關論文
★ 4-aminobiphenyl誘導HepG2細胞中的microRNAs表現 並藉由microRNAs調控DNA修復機制★ 研究Dicrotophos對HepG2細胞毒性之分子機制:CSA蛋白質在毒性扮演之角色
★ TNT經由ROS介導之內質網壓力及粒線體失衡誘導人類肝臟細胞凋亡★ Pseudomonas sp. A46全基因組分析與重金屬復育基因工程菌開發
★ 三硝基甲苯之毒理機制及生物降解暨多氯乙烯汙染模場生物整治★ 探討人類肝癌細胞HepG2經4-氨基聯苯處理過後miRNA-630對於同源重組修復相關蛋白MCM8的調控機制
★ 假單胞菌Pseudomonas sp. A46之基因工程菌開發及重金屬之生物累積和生物吸附潛力探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 4-胺基聯苯(4-aminobiphenyl;4-ABP)為多環芳香族的聯苯胺衍生物,在燃燒的香菸與汽車排放的煙霧中發現大量4-ABP 化合物,4-ABP進入到人體後,會藉由肝臟細胞的phase I與phase II的氧化還原進行代謝,解毒過程會產生自由基,進一步地導致DNA 損傷。4-ABP 15分鐘生成ROS,Comet assay 24小時後會導致Hep3B Cells 發生DNA 損傷,且 -H2AX (DNA double stand break sensor protein) 表現增加,RAD18 表現降低。再者,已知4-ABP 可誘導 HepG2 cells 產生多種 miRNA,尤其以 miR-513a-5p 和 miR-630 表現量最顯著。因此,本篇研究將探討4-ABP造成氧化型DNA損傷,是否透過miR-513a-5p 和 miR-630的調控。利用生物資訊軟體TargetScan 7.1預測此二miRNA 之標的基因,可能為RAD18、FANCG及XRCC2,由qRT-PCR 證實在HepG2與Hep3B細胞中只有miR-630 大量表現,且確認RAD18 轉譯會受到miR-630的直接調控。大量表現miR-630 導致RAD18 表現降低。4-ABP 與N-acetyl-L-cysteine (NAC)(一種自由基抑制劑) 合併處理會抑制ROS的產生,miR-630 表現也隨之降低,故得知miR-630 為ROS dependent miRNA。大量表現RAD18後,細胞核中 -H2AX foci聚集顯著降低,4-ABP造成homologous recombination 效率降低,此外,4-ABP抑制RAD18後也會使RAD51 (homologous recombination repair protein)表現降低。本研究發現了4-ABP造成基因毒性是透過ROS-dependent miR-630 活化,抑制RAD18,接著降低 Homologous Recombination活性,導致損傷之DNA 無法修復。
本研究首次證實4-ABP可造成肝臟細胞的氧化基因損傷之其中一種 ROS-dependent miRNA 機制。
摘要(英)
4-aminobiphenyl (4-ABP) is a well-recognized human carcinogen, and has been found in textile dyes, cooking oil fumes, diesel-exhaust particles and cigarette smoke. 4-ABP induces oxidative stress and DNA damage that are associated with hepatic gene toxicity. My research foused on the role of miRNA-630 on RAD18, a DNA-repair protein. Firstly, 4-ABP induced ROS generation and DNA damage in Hep3B cells. The amount of 4-ABP-induced DNA double strand breaks (DSB) in a concentration- and time-dependent by determining the expression of -H2AX (the biomarker of DSB) with the methods of Western blot and Immunofluorescence staining assay. Luciferase reporter assay further confirmed miR-630 specifically targeted the 3’UTR of RAD18; thereby inhibiting RAD18 gene expression. Pretreatment of 4-ABP-treated cells with 5 mM N-acetyl-I-cysteine (NAC) attenuated the levels of miR-630 suggest that miR-630 was a ROS- dependent miRNA in 4-ABP-treated cells. 4-ABP treatment also inhibited the activity of DNA double stand break repair. This study showed that 4-ABP induces ROS generation in Hep3B cell line, and then increased the expression of the oxidative stress response-associated with the involvement of miR-630 in DNA damage. Elevated miR-630 expression inhibits RAD18 expression, with subsequent inhibition of homologous recombination.
關鍵字(中) ★ 對胺基聯苯
★ 氧化壓力
★ miR-630
★ DNA 損傷
★ DNA 修復
★ 同源重組
關鍵字(英) ★ 4-Aminobiphenyl
★ Oxidative stress
★ miR-630
★ DNA damage
★ DNA repair
★ Homologous Recombination
論文目次 目錄
中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VII
第壹章、 緒論 1
一、 4-胺基聯苯 (4-aminobiphenyl,4-ABP) 1
(一) 偶氮染料 1
(二) 菸草燃燒煙霧 2
(三) 4-ABP 經由肝臟代謝後之代謝產物與DNA adducts 之形成 3
二、 氧化壓力 (Oxidative stress) 4
(一) 自由基的分類 5
(二) 抗自由基的機制 6
(三) 氧化壓力造成DNA damage 7
三、 基因毒性反應 (DNA damage response; DDR) 7
四、 DNA 修復(DNA Repair) 8
五、 表觀遺傳調控(Epigenetic) 10
(一) DNA甲基化 (DNA methylation) 11
(二) 組蛋白修飾 (histone modification) 11
(三) RNA干擾 (RNA interference) 11
六、 微型核醣核酸(microRNA;miRNA) 12
(一) miRNA 的介紹 12
(二) miRNA 的發現 13
(三) miRNA 的生成 13
(四) miRNA在mRNA的調控機制與結合方式 15
(五) miRNA 基因的辨識與預測 16
第貳章、 實驗目的與架構 18
第參章、 實驗材料與方法 19
一、 細胞株來源及細胞培養 19
二、 細胞計數與存活測試 21
三、 化學物質處理 22
四、 細胞存活率分析(MTT assay) 22
五、 細胞內活性氧化物質測定 23
六、 DNA損傷測定-彗星試驗(Comet assay) 25
七、 蛋白質萃取 28
八、 蛋白質定量 29
九、 蛋白質樣品處理 30
十、 蛋白質電泳 31
十一、 蛋白質轉漬 33
十二、 西方墨點法 34
十三、 哺乳類細胞RNA萃取(RNA Isolation) 36
十四、 mRNA 反轉錄成cDNA 38
十五、 DNA/RNA 電泳 40
十六、 miRNA 萃取(miRNA Isolation) 41
十七、 miRNA 反轉錄為cDNA 43
十八、 即時定量聚合酶連鎖反應 45
十九、 大腸桿菌勝任細胞之製備 47
二十、 大腸桿菌勝任細胞之轉型作用 48
二十一、 利用限制酵素切開雙股DNA 49
二十二、 插入子與載體接合與酒精沉澱DNA 50
二十三、 質體抽取(Plasmid DNA Isolation) 51
二十四、 質體純化-去除內毒素 52
二十五、 定點突變(Site Directed Mutation,SDM) 53
二十六、 質體及oligo RNA 轉染(Transfection) 55
二十七、 螢光酶活性測試 56
二十八、 免疫螢光染色(Immunofluorescence staining) 57
二十九、 同源重組活性測試 60
第肆章、 結果 (Result) 62
一、 評估4-胺基聯苯(4-ABP)對於Hep-3B 與 Hep-G2 cell 之細胞毒性影響 62
二、 評估4-胺基聯苯(4-ABP)對於Hep-3B 與 Hep-G2 cell 誘導氧化壓力和DNA損傷程度 63
三、 利用qRT-PCR 分析miR-513a-5p 與miR-630的表現 64
四、 利用qRT-PCR 與Western Blot 分析4-ABP 誘導之RAD18 mRNA 及蛋白質表現 64
五、 利用預測軟體分析其miRNA target interaction binding site 65
六、 觀察Luciferase之螢光活性,探討miR-630是否會target在RAD18之3’-UTR 65
七、 利用miR-630 mimic and inhibitor,探討與RAD18 之間的關係 66
八、 探討ROS 是否為誘導miR-630上升的主因 67
九、 4-ABP 產生ROS誘導DNA damage 及調控DNA repair protein RAD18 之影響 67
十、 探討RAD18 在 4-ABP 處理細胞後產生DNA repair 所扮演得角色 69
十一、 測定RAD18 於Homologous Recombination 之活性. 70
第伍章、 討論 71
一、 細胞株的選取 71
二、 探討4-ABP對於肝臟細胞之基因毒性機制 72
三、 探討DNA 損傷啟動DNA Response機制 73
四、 從表觀遺傳學之角度探討基因變化 74
五、 探討4-ABP誘導ROS的生成及經由表觀遺傳調控DNA Response 之DNA Repair 76
六、 miR-630 扮演的角色為何? 77
七、 RAD18 在4-ABP 造成雙股斷裂中進行DNA 修復的角色 78
第陸章、 結論 79
第柒章、 圖表 80
第捌章、 參考文獻 108
第玖章、 附錄 116
參考文獻

1. Chiang, T.A., Pei-Fen, W., Ying, L.S., Wang, L.F. and Ko, Y.C. (1999) Mutagenicity and aromatic amine content of fumes from heated cooking oils produced in Taiwan. Food Chem Toxicol, 37, 125-134.
2. Nauwelaers, G., Bellamri, M., Fessard, V., Turesky, R.J. and Langouet, S. (2013) DNA adducts of the tobacco carcinogens 2-amino-9H-pyrido[2,3-b]indole and 4-aminobiphenyl are formed at environmental exposure levels and persist in human hepatocytes. Chem Res Toxicol, 26, 1367-1377.
3. Stolz, A. (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol, 56, 69-80.
4. Case, R.A., Hosker, M.E., McDonald, D.B. and Pearson, J.T. (1993) Tumours of the urinary bladder in workmen engaged in the manufacture and use of certain dyestuff intermediates in the British chemical industry. Part I. The role of aniline, benzidine, alpha-naphthylamine, and beta-naphthylamine. 1954. Br J Ind Med, 50, 389-411.
5. Nauwelaers, G., Bessette, E.E., Gu, D., Tang, Y., Rageul, J., Fessard, V., Yuan, J.M., Yu, M.C., Langouet, S. and Turesky, R.J. (2011) DNA adduct formation of 4-aminobiphenyl and heterocyclic aromatic amines in human hepatocytes. Chem Res Toxicol, 24, 913-925.
6. Airoldi, L., Orsi, F., Magagnotti, C., Coda, R., Randone, D., Casetta, G., Peluso, M., Hautefeuille, A., Malaveille, C. and Vineis, P. (2002) Determinants of 4-aminobiphenyl-DNA adducts in bladder cancer biopsies. Carcinogenesis, 23, 861-866.
7. Tannenbaum, S.R. and Skipper, P.L. (1994) Quantitative analysis of hemoglobin-xenobiotic adducts. Methods Enzymol, 231, 625-632.
8. Airoldi, L., Vineis, P., Colombi, A., Olgiati, L., Dell′Osta, C., Fanelli, R., Manzi, L., Veglia, F., Autrup, H., Dunning, A. et al. (2005) 4-Aminobiphenyl-hemoglobin adducts and risk of smoking-related disease in never smokers and former smokers in the European Prospective Investigation into Cancer and Nutrition prospective study. Cancer Epidemiol Biomarkers Prev, 14, 2118-2124.
9. Kadlubar, F.F. and Badawi, A.F. (1995) Genetic susceptibility and carcinogen-DNA adduct formation in human urinary bladder carcinogenesis. Toxicol Lett, 82-83, 627-632.
10. Lee, H.W., Wang, H.T., Weng, M.W., Hu, Y., Chen, W.S., Chou, D., Liu, Y., Donin, N., Huang, W.C., Lepor, H. et al. (2014) Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells. Oncotarget, 5, 3526-3540.
11. Cohen, S.M., Boobis, A.R., Meek, M.E., Preston, R.J. and McGregor, D.B. (2006) 4-Aminobiphenyl and DNA reactivity: case study within the context of the 2006 IPCS Human Relevance Framework for Analysis of a cancer mode of action for humans. Crit Rev Toxicol, 36, 803-819.
12. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S. and Kalayci, O. (2012) Oxidative stress and antioxidant defense. World Allergy Organ J, 5, 9-19.
13. Blake, D.R., Allen, R.E. and Lunec, J. (1987) Free radicals in biological systems--a review orientated to inflammatory processes. Br Med Bull, 43, 371-385.
14. Lushchak, V.I. (2015) Free Radicals, Reactive Oxygen Species, Oxidative Stresses and Their Classifications. Ukr Biochem J, 87, 11-18.
15. Kovacic, P., Pozos, R.S., Somanathan, R., Shangari, N. and O′Brien, P.J. (2005) Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem, 12, 2601-2623.
16. Pastor, N., Weinstein, H., Jamison, E. and Brenowitz, M. (2000) A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol, 304, 55-68.
17. Valko, M., Izakovic, M., Mazur, M., Rhodes, C.J. and Telser, J. (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem, 266, 37-56.
18. McCord, J.M. and Fridovich, I. (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem, 244, 6049-6055.
19. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. and Telser, J. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39, 44-84.
20. Pastore, A., Federici, G., Bertini, E. and Piemonte, F. (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta, 333, 19-39.
21. Cameron, E. and Pauling, L. (1976) Supplemental ascorbate in the supportive treatment of cancer: Prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A, 73, 3685-3689.
22. Beland, F.A., Beranek, D.T., Dooley, K.L., Heflich, R.H. and Kadlubar, F.F. (1983) Arylamine-DNA adducts in vitro and in vivo: their role in bacterial mutagenesis and urinary bladder carcinogenesis. Environ Health Perspect, 49, 125-134.
23. Wang, G., Zhang, T., Sun, W., Wang, H., Yin, F., Wang, Z., Zuo, D., Sun, M., Zhou, Z., Lin, B. et al. (2017) Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radic Biol Med, 106, 24-37.
24. Kim, S.J., Cheresh, P., Jablonski, R.P., Morales-Nebreda, L., Cheng, Y., Hogan, E., Yeldandi, A., Chi, M., Piseaux, R., Ridge, K. et al. (2016) Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage. Free Radic Biol Med, 101, 482-490.
25. Adiguzel, Z., Ozalp-Yaman, S., Celik, G., Salem, S., Bagci-Onder, T., Senbabaoglu, F., Cetin, Y. and Acilan, C. (2017) A platinum-blue complex exerts its cytotoxic activity via DNA damage and induces apoptosis in cancer cells. Chem Biol Drug Des.
26. Al-Mohanna, M.A., Al-Khodairy, F.M., Krezolek, Z., Bertilsson, P.A., Al-Houssein, K.A. and Aboussekhra, A. (2001) p53 is dispensable for UV-induced cell cycle arrest at late G(1) in mammalian cells. Carcinogenesis, 22, 573-578.
27. Cervelli, T., Borghini, A., Galli, A. and Andreassi, M.G. (2012) DNA damage and repair in atherosclerosis: current insights and future perspectives. Int J Mol Sci, 13, 16929-16944.
28. Qin, Q., Xie, H., Wise, S.S., Browning, C.L., Thompson, K.N., Holmes, A.L. and Wise, J.P., Sr. (2014) Homologous recombination repair signaling in chemical carcinogenesis: prolonged particulate hexavalent chromium exposure suppresses the Rad51 response in human lung cells. Toxicol Sci, 142, 117-125.
29. House, N.C., Koch, M.R. and Freudenreich, C.H. (2014) Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet, 5, 296.
30. Wang, S.C., Chung, J.G., Chen, C.H. and Chen, S.C. (2006) 2- and 4-Aminobiphenyls induce oxidative DNA damage in human hepatoma (Hep G2) cells via different mechanisms. Mutat Res, 593, 9-21.
31. Truong, L.N., Li, Y., Sun, E., Ang, K., Hwang, P.Y. and Wu, X. (2014) Homologous recombination is a primary pathway to repair DNA double-strand breaks generated during DNA rereplication. J Biol Chem, 289, 28910-28923.
32. Chapman, J.R., Taylor, M.R. and Boulton, S.J. (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell, 47, 497-510.
33. Goetz, J.D., Motycka, T.A., Han, M., Jasin, M. and Tomkinson, A.E. (2005) Reduced repair of DNA double-strand breaks by homologous recombination in a DNA ligase I-deficient human cell line. DNA Repair (Amst), 4, 649-654.
34. Pennisi, R., Ascenzi, P. and di Masi, A. (2015) Hsp90: A New Player in DNA Repair? Biomolecules, 5, 2589-2618.
35. Wang, X., Andreassen, P.R. and D′Andrea, A.D. (2004) Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol Cell Biol, 24, 5850-5862.
36. Tripathi, K., Mani, C., Clark, D.W. and Palle, K. (2016) Rad18 is required for functional interactions between FANCD2, BRCA2, and Rad51 to repair DNA topoisomerase 1-poisons induced lesions and promote fork recovery. Oncotarget, 7, 12537-12553.
37. Bennardo, N., Cheng, A., Huang, N. and Stark, J.M. (2008) Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet, 4, e1000110.
38. Davis, A.J., Chen, B.P. and Chen, D.J. (2014) DNA-PK: a dynamic enzyme in a versatile DSB repair pathway. DNA Repair (Amst), 17, 21-29.
39. Kim, G.H., Ryan, J.J., Marsboom, G. and Archer, S.L. (2011) Epigenetic mechanisms of pulmonary hypertension. Pulm Circ, 1, 347-356.
40. Bagasra, O. and Prilliman, K.R. (2004) RNA interference: the molecular immune system. J Mol Histol, 35, 545-553.
41. Gregory, R.I., Chendrimada, T.P. and Shiekhattar, R. (2006) MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol, 342, 33-47.
42. Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E. et al. (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 37, 766-770.
43. Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-854.
44. Wightman, B., Ha, I. and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855-862.
45. Olsen, P.H. and Ambros, V. (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 216, 671-680.
46. Zou, Y., Chiu, H., Domenger, D., Chuang, C.F. and Chang, C. (2012) The lin-4 microRNA targets the LIN-14 transcription factor to inhibit netrin-mediated axon attraction. Sci Signal, 5, ra43.
47. Kim, V.N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol, 6, 376-385.
48. Eis, P.S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M.F., Lund, E. and Dahlberg, J.E. (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A, 102, 3627-3632.
49. He, L. and Hannon, G.J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 5, 522-531.
50. Muqbil, I., Bao, B., Abou-Samra, A.B., Mohammad, R.M. and Azmi, A.S. (2013) Nuclear export mediated regulation of microRNAs: potential target for drug intervention. Curr Drug Targets, 14, 1094-1100.
51. Bohnsack, M.T., Czaplinski, K. and Gorlich, D. (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 10, 185-191.
52. Yi, R., Qin, Y., Macara, I.G. and Cullen, B.R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17, 3011-3016.
53. Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K. and Shiekhattar, R. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436, 740-744.
54. Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P. and Bartel, D.P. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 27, 91-105.
55. Liu, X., Jiang, F., Kalidas, S., Smith, D. and Liu, Q. (2006) Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA, 12, 1514-1520.
56. Fabbri, M., Calore, F., Paone, A., Galli, R. and Calin, G.A. (2013) Epigenetic regulation of miRNAs in cancer. Adv Exp Med Biol, 754, 137-148.
57. Doench, J.G. and Sharp, P.A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev, 18, 504-511.
58. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B. and Bartel, D.P. (2002) Prediction of plant microRNA targets. Cell, 110, 513-520.
59. Tang, G., Reinhart, B.J., Bartel, D.P. and Zamore, P.D. (2003) A biochemical framework for RNA silencing in plants. Genes Dev, 17, 49-63.
60. Maziere, P. and Enright, A.J. (2007) Prediction of microRNA targets. Drug Discov Today, 12, 452-458.
61. Ambros, V. (2004) The functions of animal microRNAs. Nature, 431, 350-355.
62. Friedman, R.C., Farh, K.K., Burge, C.B. and Bartel, D.P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19, 92-105.
63. Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B. and Cohen, S.M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113, 25-36.
64. Johnston, R.J. and Hobert, O. (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature, 426, 845-849.
65. Chen, P.Y., Manninga, H., Slanchev, K., Chien, M., Russo, J.J., Ju, J., Sheridan, R., John, B., Marks, D.S., Gaidatzis, D. et al. (2005) The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev, 19, 1288-1293.
66. Houbaviy, H.B., Murray, M.F. and Sharp, P.A. (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell, 5, 351-358.
67. Seitz, H., Youngson, N., Lin, S.P., Dalbert, S., Paulsen, M., Bachellerie, J.P., Ferguson-Smith, A.C. and Cavaille, J. (2003) Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet, 34, 261-262.
68. Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B. and Bartel, D.P. (2003) Vertebrate microRNA genes. Science, 299, 1540.
69. Lau, N.C., Lim, L.P., Weinstein, E.G. and Bartel, D.P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294, 858-862.
70. Dikalov, S., Griendling, K.K. and Harrison, D.G. (2007) Measurement of reactive oxygen species in cardiovascular studies. Hypertension, 49, 717-727.
71. Olive, P.L. and Banath, J.P. (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc, 1, 23-29.
72. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-408.
73. Carter, P. (1986) Site-directed mutagenesis. Biochem J, 237, 1-7.
74. Xia, Y., Chu, W., Qi, Q. and Xun, L. (2015) New insights into the QuikChange process guide the use of Phusion DNA polymerase for site-directed mutagenesis. Nucleic Acids Res, 43, e12.
75. Cha, H.J., Kim, O.Y., Lee, G.T., Lee, K.S., Lee, J.H., Park, I.C., Lee, S.J., Kim, Y.R., Ahn, K.J., An, I.S. et al. (2014) Identification of ultraviolet B radiationinduced microRNAs in normal human dermal papilla cells. Mol Med Rep, 10, 1663-1670.
76. Westerink, W.M. and Schoonen, W.G. (2007) Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro, 21, 1581-1591.
77. Guo, L., Dial, S., Shi, L., Branham, W., Liu, J., Fang, J.L., Green, B., Deng, H., Kaput, J. and Ning, B. (2011) Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos, 39, 528-538.
78. Huan, L.C., Wu, J.C., Chiou, B.H., Chen, C.H., Ma, N., Chang, C.Y., Tsen, Y.K. and Chen, S.C. (2014) MicroRNA regulation of DNA repair gene expression in 4-aminobiphenyl-treated HepG2 cells. Toxicology, 322, 69-77.
79. Lee, Y.S., Doonan, B.B., Wu, J.M. and Hsieh, T.C. (2016) Combined metformin and resveratrol confers protection against UVC-induced DNA damage in A549 lung cancer cells via modulation of cell cycle checkpoints and DNA repair. Oncol Rep, 35, 3735-3741.
80. Liu, G., Yang, D., Rupaimoole, R., Pecot, C.V., Sun, Y., Mangala, L.S., Li, X., Ji, P., Cogdell, D., Hu, L. et al. (2015) Augmentation of response to chemotherapy by microRNA-506 through regulation of RAD51 in serous ovarian cancers. J Natl Cancer Inst, 107.
81. Liu, Y., Qiang, W., Xu, X., Dong, R., Karst, A.M., Liu, Z., Kong, B., Drapkin, R.I. and Wei, J.J. (2015) Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells. Oncotarget, 6, 38983-38998.
82. Wan, G., Mathur, R., Hu, X., Zhang, X. and Lu, X. (2011) miRNA response to DNA damage. Trends Biochem Sci, 36, 478-484.
83. He, M., Zhou, W., Li, C. and Guo, M. (2016) MicroRNAs, DNA Damage Response, and Cancer Treatment. Int J Mol Sci, 17.
84. Murata, M., Tamura, A., Tada, M. and Kawanishi, S. (2001) Mechanism of oxidative DNA damage induced by carcinogenic 4-aminobiphenyl. Free Radic Biol Med, 30, 765-773.
85. Deng, Q., Huang, S., Zhang, X., Zhang, W., Feng, J., Wang, T., Hu, D., Guan, L., Li, J., Dai, X. et al. (2014) Plasma microRNA expression and micronuclei frequency in workers exposed to polycyclic aromatic hydrocarbons. Environ Health Perspect, 122, 719-725.
86. Dai, N., Qing, Y., Cun, Y., Zhong, Z., Li, C., Zhang, S., Shan, J., Yang, X., Dai, X., Cheng, Y. et al. (2016) miR-513a-5p regulates radiosensitivity of osteosarcoma by targeting human apurinic/apyrimidinic endonuclease. Oncotarget.
87. Katyal, S., Lee, Y., Nitiss, K.C., Downing, S.M., Li, Y., Shimada, M., Zhao, J., Russell, H.R., Petrini, J.H., Nitiss, J.L. et al. (2014) Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci, 17, 813-821.
88. Chen, W.X., Zhang, Z.G., Ding, Z.Y., Liang, H.F., Song, J., Tan, X.L., Wu, J.J., Li, G.Z., Zeng, Z., Zhang, B.X. et al. (2016) MicroRNA-630 suppresses tumor metastasis through the TGF-beta- miR-630-Slug signaling pathway and correlates inversely with poor prognosis in hepatocellular carcinoma. Oncotarget, 7, 22674-22686.
89. Zhang, J.W., Li, Y., Zeng, X.C., Zhang, T., Fu, B.S., Yi, H.M., Zhang, Q. and Jiang, N. (2015) miR-630 overexpression in hepatocellular carcinoma tissues is positively correlated with alpha-fetoprotein. Med Sci Monit, 21, 667-673.
90. Zou, Y.T., Gao, J.Y., Wang, H.L., Wang, Y., Wang, H. and Li, P.L. (2015) Downregulation of microRNA-630 inhibits cell proliferation and invasion and enhances chemosensitivity in human ovarian carcinoma. Genet Mol Res, 14, 8766-8777.
91. Wiemer, E.A. and Berns, E.M. (2015) MicroRNA regulation of RAD51 in serous ovarian cancer modulates chemotherapy response. J Natl Cancer Inst, 107.
92. Liu, R.L., Dong, Y., Deng, Y.Z., Wang, W.J. and Li, W.D. (2015) Tumor suppressor miR-145 reverses drug resistance by directly targeting DNA damage-related gene RAD18 in colorectal cancer. Tumour Biol, 36, 5011-5019.
指導教授 陳師慶(Ssu-Ching Chen) 審核日期 2017-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明