博碩士論文 104821018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.80.223.123
姓名 江澔(Hoa Jiang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 調控巨噬細胞的表現型態減緩類風濕性關節炎造成的疼痛
(Modulation of phenotypic diversity of macrophages attenuates rheumatoid arthritis induced mechanical hyperalgesia)
相關論文
★ 週邊發炎反應增加酸敏感受體- TDAG8基因在背根神經節之表現量★ 酸敏感G蛋白偶合受體,G2A,在ASIC3基因剔除小鼠中改變表現量
★ MrgB4受體專一表現於感覺神經元,且在ASIC3基因剔除小鼠中有不同的表現。★ 血清素受體2B對酸敏感離子通道3與辣椒素受體1的影響
★ 酸敏感G蛋白偶合受體在小鼠背根神經節神經元中的訊息傳導路徑★ 酸敏感G蛋白偶合受體功能上的拮抗機制
★ TDAG8活化後經由PKA與PKCε增強辣椒素受體的敏感度★ G-蛋白偶合接受體與G-蛋白訊號調控蛋白之整合型資料庫
★ 血清素受體2B基因在酸敏感受體3基因剔除小鼠的背根神經節中表現量增加★ 酸敏感的G蛋白偶合受體─OGR1表現在背根神經節內與痛覺相關的感覺神經元上
★ 血清素受體2B參與血清素引起的機械性痛覺過敏★ 血清素受體2B調控鈣離子變化影響機械性痛覺敏感
★ 蛋白質激酶A以及蛋白質激酶Cɛ在急性轉換至慢性發炎性疼痛中扮演的角色★ 蛋白磷酸激酶A 與蛋白磷酸激酶C epsilon 參與在 酸以及溶血磷脂質引起的疼痛敏感現象
★ 血清素受體2A和2B分別參與調控由完全弗氏劑或血清素所引發的熱痛覺敏感和機械性痛覺敏感★ ASIC3和TRPV1基因缺乏小鼠在異丙腎上腺素造成心肌缺血後的基因表達
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-7-20以後開放)
摘要(中) 類風濕性關節炎(RA)是一種自體免疫疾病,其特徵在於慢性關節炎症導致骨頭 侵蝕和軟骨損傷。RA 患者經常伴隨著持續性疼痛,並將疼痛改善作為首要任務。目前 RA 患者的治療著重於抑制炎症,在減緩慢性疼痛方面並沒有顯著的效果。治療 RA 引 發的疼痛仍然是臨床實踐中的主要挑戰。我用發炎性疼痛模式動物篩選了小分子化合物 和胜?類藥物用於止痛效果。初步篩選後,我選擇小分子藥物NSC745885和Peptide X 用於 RA 模式小鼠做進一步測試。在 RA 模式小鼠中,腹腔注射 NSC745885 可以透過促 發炎表型巨噬細胞(M1)的數量下降和抗發炎表型巨噬細胞(M2)的數量增加而減少 RA 誘導的機械性痛覺過敏。口服低劑量的 Peptide X 可以減少 RA 誘導的機械性痛覺過 敏,推測可能是通過減少 M1 巨噬細胞和血液中 IL-6 的濃度。
摘要(英) Rheumatoid arthritis (RA), an autoimmuedisease, is characterized by chronic joint inflammation leading to bone erosion and cartilage damage. RA patients often have persistent pain and declare pain as the greatest problem. Current treatments focusing on suppression of inflammation may produce an inadequate response in relieving chronic pain in many RA patients. The treatment of RA pain continues to be a major management challenge in clinical practice. I have screened small molecule compounds and peptides for analgesic effects using inflammatory pain animal models. After pre-screening, I have identified compound NSC745885 and Peptide X for further tests on RA models. In RA model, intraperitoneal administration of NSC745885 reduced RA-induced mechanical hyperalgesia, probably through a decline in the number of pro-inflammatory phenotype macrophage (M1) and an increase in the number of anti-inflammatory phenotype macrophage (M2). Oral delivery of low dose of Peptide X reduced RA-induced mechanical hyperalgesia, probably by the reduction of the number of M1 macrophage and IL-6 level.
關鍵字(中) ★ 巨噬細胞
★ 類風濕性關節炎
關鍵字(英) ★ macrophages
★ rheumatoid arthritis
論文目次 目錄
中文摘要................................................................................................................................ I Abstract ................................................................................................................................. II 致謝 ..................................................................................................................................... III 第一章 緒論 ......................................................................................................................... 1
1.1 類風濕性關節炎藥物的市場價值.......................................................................................... 2 1.2 類風濕性關節炎的發炎機制 ................................................................................................. 2
1.2.1 類風濕性關節炎中免疫系統扮演的角色......................................................................................3 1.3 類風濕性關節炎的疼痛機制 ................................................................................................. 4
1.3.1 類風濕性關節炎中與疼痛相關的基因..........................................................................................6
1.4 研究目的................................................................................................................................7 1.4.1 小分子藥物 NSC745885...............................................................................................................8 1.4.2 胜?類藥物 Peptide X ...................................................................................................................8
第二章 材料與方法 ............................................................................................................. 9
2.1 實驗材料 ............................................................................................................................... 10 2.1.1 實驗動物 (Experimental animals)................................................................................................10 2.1.2 實驗藥品 (Experimental drugs)...................................................................................................10 2.1.3 實驗器具(Experimental tools).................................................................................................11
2.2 實驗方法 ............................................................................................................................... 11 2.2.1 注射酸引發傷害性疼痛模式 (Acid model).................................................................................11 2.2.2 注射CFA引發發炎性疼痛模式 (CFAmodel)............................................................................11 2.2.3 小鼠關節炎模式 (RAmodel)......................................................................................................12 2.2.4 關節炎評估 (Arthritis score) ....................................................................................................... 12 2.2.5 機械性痛覺行為實驗(Mechanical behavior test)...................................................................... 12 2.2.6 蘇木素-伊紅染色(Hematoxylin and eosin stain , H&E stain)........................................................13 2.2.7 免疫組織化學染色法( Immunohistochemistry)............................................................................14 2.2.8 血液中細胞因子定量分析 ELISA(The enzyme-linked immunosorbent assay) .............................. 15
2.3 統計分析 (Statistics) ..................................................................................................... 15 第三章 結果 ....................................................................................................................... 16
IV
3.1 NSC745885 及其衍生物 B1-C1、RV13 與胜?類藥物 Peptide X 降低完全弗氏佐劑引發 的機械性痛覺過敏感.................................................................................................................. 17
3.2 重複注射完全弗氏佐劑(CFA)於小鼠關節誘發長期關節疼痛........................................18 3.3 M1 巨噬細胞數目在關節炎後期 (> 8W)大量增加;M2 巨噬細胞數目在關節炎中期
(4W-8W)增加 ............................................................................................................................. 19
3.4 NSC745885 有效抑制關節炎模式小鼠誘發的機械性痛覺過敏感 ................................... 20
3.5 長期注射NSC745885減緩關節炎引發滑膜增生、骨頭侵蝕與軟骨破壞.......................20
3.6 NSC745885 降低關節炎模式小鼠中 M1 巨噬細胞數量,增加 M2 巨噬細胞數量 ......... 21
3.7 關節炎模式小鼠中,NSC745885對血液中TNF-α和IL-6的影響................................22
3.8 Peptide X 抑制關節炎模式小鼠誘發的機械性痛覺過敏感 .............................................. 22
3.9 Peptide X 有效減緩關節炎引發滑膜增生、骨頭侵蝕與軟骨破壞................................... 22
3.10 長期給予PeptideX降低關節炎模式小鼠中M1巨噬細胞數目....................................23 3.11 Peptide X 有效降低關節炎模式小鼠血液中 IL-6 的濃度............................................... 23
第四章 討論 ....................................................................................................................... 24 4.1 模擬類風溼性關節炎模式小鼠..........................................................................................25
4.2 NSC745885 在發炎性疼痛的止痛效果 ........................................................................... 26
4.3 NSC745885 在關節炎中調控巨噬細胞的數量................................................................ 27
4.4 Peptide X 在發炎性疼痛的止痛效果 .............................................................................. 28
4.5 Peptide X 在關節炎疼痛的止痛效果 .............................................................................. 28
4.6 Peptide X 在關節炎中調控巨噬細胞的數量................................................................... 29
第五章 參考文獻 ............................................................................................................... 30


圖目錄
Figure 3.1. Screening analgesic compounds and peptides using acid model and sub-chronic inflammatory model. ........................................................................................................... 37
Figure 3.2. Repeat injection of CFA induced chronic arthritic pain. .................................. 39
Figure 3.3. The number of CD68+ macrophages is increased with time in RA mice. ...... 40
Figure 3.4. The number of CD80+ macrophages is increased with time in RA mice. ...... 42
Figure 3.5. The number of CD163+ macrophages is increased with time in RA mice. .... 44
Figure 3.6. NS745885 treatment induces mechanical hyperalgesia in RA mice. ............. 46
Figure 3.7. Histology of ipsilateral side joints in arthritic ICR mice................................ 47
Figure 3.8. The number of CD68+ macrophages effects with compound treatment in RA mice..................................................................................................................................... 48
Figure 3.9. The number of CD80+ macrophages effects with compound treatment in RA mice..................................................................................................................................... 50
Figure 3.10. The number of CD163+ macrophages effects with compound treatment in RA mice............................................................................................................................... 52
Figure 3.11. Levels of serum IL-6 and TNF-α effect by NSC745885 in chronic arthritis pain. .................................................................................................................................... 54
Figure 3.12. Peptide X treatment induces mechanical hyperalgesia in RA mice. ............ 55 Figure 3.13. Histology of ipsilateral side joints in arthritic ICR mice.............................. 56
Figure 3.14. The number of CD68+ macrophages effects with compound treatment in RA mice..................................................................................................................................... 57
Figure 3.15. The number of CD80+ macrophages effects with compound treatment in RA mice..................................................................................................................................... 59
Figure 3.16. The number of CD163+ macrophages effects with compound treatment in RA mice............................................................................................................................... 61
Figure 3.17. Levels of serum IL-6 and TNF-α effect by Peptide X in chronic arthritis pain. .................................................................................................................................... 63

表目錄
Table 3.1 Pre-screening of compounds and peptides........................................................... 64 Table 3.2 The number of macrophages in RA mice............................................................65 Table 3.3 The number of macrophages effects with NSC745885 treatment in RA mice .. 66 Table 3.4 The number of macrophages effects with Peptide X treatment in RA mice ...... 67
參考文獻 Alonso J, Ferrer M, Gandek B. "Health-related quality of life associated with chronic conditions in eight countries: results from the international quality of life assessment (IQOLA) project. " Qual Life Res.13, (2004): 283–298
Andrew D. Cook, Anne D. Christensen, Damini Tewari, Stephen B. McMahon, John A.
"Hamilton. Immune Cytokines and Their Receptors in Inflammatory Pain. " Cell Press. Volume 39, (2018): 240-255
Axmann R, Bohm C, Kronke G, Zwerina J, Smolen J, Schett G. "Inhibition of interleukin- 6 receptor directly blocks osteoclast formation in vitro and in vivo. " Arthritis Rheum. 60, (2009): 2747–2756
Benoit, Marie, Benoi?t Desnues, and Jean-Louis Mege. "Macrophage polarization in bacterial infections." The Journal of Immunology 181.6, (2008): 3733-3739
Berg WB, Joosten LA, Kollias G, Van De Loo FA. "Role of tumour necrosis factor alpha in experimental arthritis: separate activity of interleukin 1beta in chronicity and cartilage destruction." Ann Rheum Dis. 58, (1999): I40–I48
Boettger MK, Hensellek S, Richter F, Gajda M, Sto?ckigt R, Segond von Banchet G, Bra?uer R, Schaible HG. "Antinociceptive effects of tumor necrosis factor alpha neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target."Arthritis Rheum. 58,(2008): 2368–2378
Bondeson J, Blom AB, Wainwright S, Hughes C, Caterson B, van den Berg WB. "The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis." Arthritis Rheum 62, (2010): 647–657
Chomarat P, Rissoan MC, Pin JJ, Banchereau J, Miossec P. "Contribution of IL-1, CD14, and CD13 in the increased IL-6 production induced by in vitro monocyte-synoviocyte interactions." J Immunol.155, (1995): 3645–3652
Christensen, B. N. "Proton-sensing G protein-coupled receptor mobilizes calcium in human synovial cells." Am J Physiol Cell Physiol. 289, (2005): C601–C608.


38
Christianson CA, Corr M, Firestein GS, Mobargha A, Yaksh TL, Svensson CI.
"Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis." Pain. 151, (2010): 394–403
Dong F, He X. "Activin A: a potential therapeutic target for characterizing and stopping joint pain early in rheumatoid arthritis patients." Inflammation 37, (2014): 170–76
Farr, M. "Significance of the hydrogen ion centration in synovial fluid in rheumatoid arthritis." Clinical and Experimental Rheumatology 3, (1985): 99–104
Feldmann M, Brennan FM, Maini RN. "Role of cytokines in rheumatoid arthritis." Annu Rev Immunol. 14, (1996): 397–440.
Fernandes, E. S. "A distinct role for transient receptor potential ankyrin 1, in addition to transient receptor potential vanilloid 1, in tumor necrosis factor α-induced inflammatory hyperalgesia and Freund’s complete adjuvant-induced monarthritis." Arthritis Rheum. 63, (2011): 819–29
Firestein, G. S. "Evolving concepts of rheumatoid arthritis. " Nature 423, (2003): 356–361 Fonseca JE, Santos MJ, Canhao H, Choy E. "Interleukin-6 as a key player in systemic
inflammation and joint destruction." Autoimmun Rev. 8, (2009): 538–542
Miyasaka N, Nanki T. "Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis." BMC Musculoskelet Disord, (2014) 1471-2474-15-275
Grassi W. "The clinical features of rheumatoid arthritis. " 27 Suppl (1998) : S18-24.
Gui H, Liu X, Liu LR, Su DF, Dai SM. "Activation of cannabinoid receptor 2 attenuates synovitis and joint distruction in collagen-induced arthritis. " Immunobiology 220(6), (2015): 817–822
FQ, Poole S, Lorenzetti BB, Ferreira SH. "The pivotal role of tumour necrosis factor α in the
development of inflammatory hyperalgesia. " Br J Pharmacol. 107 (1992): 660–664
Fukuda S, Kohsaka H, Takayasu A, Yokoyama W, Miyabe C, Miyabe Y, Harigai M,
39

Gui H, Liu X, Wang ZW, He DY, Su DF, Dai SM. "Expression of cannabinoid receptor 2 and its inhibitory effects on synovial fibroblasts in rheumatoid arthritis." Rheumatology (Oxford) (2014): 802–809
Hamilton, T. A."Myeloid Colony Stimulating Factors as Regulators of Macrophage Polarization." Frontiers in Immunology, (2014)
Hashizume M, Mihara M. "The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis." Arthritis. 2011, (2011): 765624
Heiberg T, Finset A, Uhlig T, Kvien TK. "Seven year changes in health status and priorities for improvement of health in patients with rheumatoid arthritis." Ann. Rheum. Dis. 64(2), (2005): 191–195
Hikiji, H. "TDAG8 activation inhibits osteoclastic bone resorption." FASEB J. 28, (2014): 871–9
Hootman JM, Helmick CG, Barbour KE. "Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults." Art Rheumatol, (2016): 1582–1587
Houssiau FA, Devogelaer JP, Van Damme J, de Deuxchaisnes CN, Van Snick J.
"Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. " Arthritis Rheum 31, (1998) : 784–788
Hsieh WS, Kung CC, Huang SL, Lin SC, Sun WH. "TDAG8, TRPV1, and ASIC3 involved (2017):8870
Huang HS, Chen TC, Chen RH, Huang KF, Huang FC. "Synthesis, cytotoxicity and human telomerase inhibition activities of a series of 1,2-heteroannelated anthraquinones and anthra[1,2-d]imidazole-6,11-dione homologues." Bioorg Med Chem 17 (2009) : 7418– 7428
in establishing hyperalgesic priming in experimental rheumatoid arthritis.
"
Sci Rep.
40

Inglis JJ, Nissim A, Less DM, Hunt S, Chernajovyky Y, Kidd BL. "The differential contribution of tumor necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation." Arthritis Res Ther. 7 (2005) : R807
Inglis JJ, Notley CA, Essex D, Wilson AW, Feldmann M, Anand P, Williams R. "Collagen- induced arthritis as a model of hyperalgesia. Functional and cellular analysis of the analgesic actions of tumor necrosis factor blockade." Arthritis Rheum 56, (2007) : 4015– 4023
Klareskog L, Forsum U, Scheynius A, Kabelitz D, Wigzell H. "Evidence in support of a self- perpetuating HLA-DR-dependent delayed-type cell reaction in rheumatoid arthritis." Proc Natl Acad Sci USA 79, (1982) : 3632–3636
Klooster ten PM, Veehof MM, Taal E, van Riel PLCM, van de Laar MAFJ. "Changes in priorities for improvement in patients with rheumatoid arthritis during 1 year of anti- tumour necrosis factor treatment." Ann. Rheum. Dis. 66(11), (2007) : 1485–1490
Mantovani, Alberto. "Macrophage polarization: tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes." Trends in immunology 23.11, (2002) : 549-555
2205–2219
McInnes, I. B. & Schett, G. "Cytokines in the pathogenesis of rheumatoid arthritis." Nat Rev Immunol 7, (2007) : 429–442
Mogi, C. "Involvement of proton-sensing TDAG8 in extracellular acidification-induced inhibition of proinflammatory cytokine production in peritoneal macrophages." J Immunol. 182, (2009) : 3243–3251
Kinne RW, Stuhlmuller B, Palombo-Kinne E, Burmester GR. "The role of macrophages in
rheumatoid arthritis." Rheumatoid Arthritis, (2006) : 55–75
McInnes
IB, Schett G. "The pathogenesis of rheumatoid arthritis." N Engl J Med. 365, (2011) :
41

Morris, V. H., Cruwys, S. C. & Kidd, B. L. "Characterization of cpsacin-induced mechanical hyperlagesia as amarker for altered nociceptive processing in patients with rheumatoid arthritis." Pain 71, (1997) : 179–86
Nowell MA, Richards PJ, Horiuchi S, Yamamoto N, Rose-John S, Topley N, Williams AS, Jones SA. "Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130." J Immunol. 171, (2003) : 3202–3209
Onozawa, Y. "Activation of T cell death-associated gene 8 regulates the cytokine production of T cells and macrophages in vitro." Eur J Pharmacol. 683, (2012) : 325–331
Onozawa, Y., Komai, T. & Oda, T. "Activation of T cell death-associated gene 8 attenuates inflammation by negatively regulating the function of inflammatory cells." Eur J Pharmacol. 654, (2011) : 315–319
Quan LD, Thiele GM, Tian J, Wang D. "The development of novel therapies for rheumatoid arthritis." Expert Opin Ther Pat 18, (2008) : 723–738
Roche PA, Klestov AC, Heim HM. "Description of stable pain in rheumatoid arthritis: a 6 year study." J. Rheumatol. 30(8), (2003) : 1733–1738
Schaible, H.G. "Nociceptive neurons detect cytokines in arthritis." Arthritis Res. Ther. 16, (2014) : 470
Scott BB, Weisbrot LM, Greenwood JD, Bogoch ER, Paige CJ, Keystone EC. "Rheumatoid arthritis synovial fibroblast and U937 macrophage/monocyte cell line interaction in cartilage degradation." Arthritis Rheum. 40, (1997) : 490–498
Sheehy, C., Murphy, E., & Barry, M.). "D e p r e s s i o n i n r h e u m a t o i d a r t h r i t i s : Underscoring the problem." Rheumatology, 45(11), (2006) : 1325-1327
Sluka, K. A. "Acid-sensing ion channel 3 deficiency increases inflammation but decreases pain behavior in murine arthritis." Arthritis Rheum. 65, (2013) : 1194–202
42

Sokka, T. "Work disability in early rheumatoid arthritis. " C l i n i c a l a n d Experimental Rheumatology 21, (2003) : S71-S74
Sophocleous A, Landao-Bassonga E, Van’t Hof RJ, Idris AI, Ralston SH. "The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation." Endocrinology. 152(6), 2011 : 2141–2149
Su, Y. S., Sun, W. H. & Chen, C. C. "Molecular mechanism of inflammatory pain." World Journal of Anesthesiology 3, (2014) : 71–81
Tran CN, Lundy SK, Fox DA. "Synovial biology and T cells in rheumatoid arthritis." Pathophysiology. 12(3), (2005) : 183–189
Yuan-Wu Chen, Hsu-Shan Huang, Yi-Shing Shieh, Kuo-Hsing Ma, Shing-Hwa Huang, Dueng-Yuan Hueng, Huey-Kang Sytwu, Gu-Jiun Lin. "A Novel Compound NSC745885 Exerts an Anti-Tumor Effect on Tongue Cancer SAS Cells In Vitro and In Vivo." The PLOS ONE Staff ,(2014)
指導教授 孫維欣(Wei-Hsin Sun) 審核日期 2018-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明