參考文獻 |
Andrews M., Huizinga D. H., Crowell D. N. (2010). The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes. BMC plant biology, 10(1), 118.
Atsmon-Raz Y., Tieleman D. P. (2017). Parameterization of palmitoylated cysteine, farnesylated cysteine, geranylgeranylated cysteine, and myristoylated glycine for the Martini force field. The Journal of Physical Chemistry B, 121(49), 11132-11143.
Barghetti A., Sjögren L., Floris M., Paredes E. B., Wenkel S., Brodersen P. (2017). Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Genes & Development.
Caplan A. J., Tsai J., Casey P. J., Douglas M. G. (1992). Farnesylation of YDJ1p is required for function at elevated growth temperatures in Saccharomyces cerevisiae. Journal of Biological Chemistry, 267(26), 18890-18895.
Chang P. F. L., Lin C. Y. (2000). The discovery of the heat shock response in plants. In Discoveries In Plant Biology: Volume III (pp. 347-370).
Craig E. A., Gambill B. D., Nelson R. J. (1993). Heat shock proteins: molecular chaperones of protein biogenesis. Microbiological reviews, 57(2), 402-414.
Cyr D. M., Ramos C. H. (2015). Specification of Hsp70 function by type I and type II Hsp40. In The Networking of Chaperones by Co-chaperones, Springer, Cham. pp. 91-102.
Dutilleul C., Ribeiro I., Blanc N., Nezames C. D., Deng X. W., Zglobicki P., Barrera A. M. P., Atehortùa L., Courtois M., Labas V., Giglioli‐Guivarc′h N. (2016). ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis. Plant, cell & environment, 39(1), 185-198.
Galichet A., Gruissem W. (2003). Protein farnesylation in plants—conserved mechanisms but different targets. Current opinion in plant biology, 6(6), 530-535.
Greer D. H., Weston C. (2010). Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Functional Plant Biology, 37(3), 206-214.
Gurley W. B., Key J. L. (1991). Transcriptional regulation of the heat-shock response: a plant perspective. Biochemistry, 30(1), 1-12.
Ham B. K., Park J. M., Lee S. B., Kim M. J., Lee I. J., Kim K. J., Kwon C. S., Paek K. H. (2006). Tobacco Tsip1, a DnaJ-type Zn finger protein, is recruited to and potentiates Tsi1-mediated transcriptional activation. The Plant Cell, 18(8), 2005-2020.
Hendrick J. P., Hartl F. U. (1993). Molecular chaperone functions of heat-shock proteins. Annual review of biochemistry, 62(1), 349-384.
Jiang H., Zhang X., Chen X., Aramsangtienchai, P., Tong Z., Lin H. (2018). Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chemical reviews, 118(3), 919-988.
Johnson C. D., Chary S. N., Chernoff E. A., Zeng Q., Running M. P., Crowell D. N. (2005). Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. Plant Physiology, 139(2), 722-733.
Kimura Y., Yahara I., Lindquist S. (1995). Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science, 268(5215), 1362-1365.
Kotak S., Larkindale J., Lee U., von Koskull-Döring P., Vierling E., Scharf K. D. (2007). Complexity of the heat stress response in plants. Current Opinion in Plant biology, 10(3), 310-316.
Lee J. H., Schöffl F. (1996). An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Molecular and General genetics MGG, 252(1-2), 11-19.
Lee S., Tsai F. T. (2005). Molecular chaperones in protein quality control. J Biochem Mol Biol, 38(3), 259-265.
Leng L., Liang Q., Jiang J., Zhang C., Hao Y., Wang X., Su W. (2017). A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana. Journal of plant research, 130(2), 349-363.
Lesk C., Rowhani P., Ramankutty N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84.
Lin B. L., Wang J. S., Liu H. C., Chen R. W., Meyer Y., Barakat A., Delseny M. (2001). Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell stress & chaperones, 6(3), 201.
LIU H. C., LIAO H. T., CHARNG Y. Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, cell & environment, 34(5), 738-751.
Liu H. T., Gao F., Li G. L., Han J. L., Liu D. L., Sun D. Y., Zhou R. G. (2008). The calmodulin‐binding protein kinase 3 is part of heat‐shock signal transduction in Arabidopsis thaliana. The Plant Journal, 55(5), 760-773.
Mayer M. P., Bukau B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and molecular life sciences, 62(6), 670.
Neumann D., Nover L., Parthier B., Rieger R., Scharf K. D., Wollgiehn R. (1989). Heat shock and other stress response systems of plants. Results and problems in cell differentiation, 16, 1-155.
Parsell D. A., Lindquist S. (1993). The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annual review of genetics, 27(1), 437-496.
Reindl A., Schoffl F., Schell J., Koncz C., Bako L. (1997). Phosphorylation by a cyclin-dependent kinase modulates DNA binding of the Arabidopsis heat-shock transcription factor HSF1 in vitro. Plant physiology, 115(1), 93-100.
Riabowol K. T., Mizzen L. A., Welch W. J. (1988). Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science, 242(4877), 433-436.
Running M. P. (2014). The role of lipid post–translational modification in plant developmental processes. Frontiers in plant science, 5, 50.
Sable A., Agarwal S. K. (2018). Plant Heat Shock Protein Families: Essential Machinery for Development and Defense. Journal of Biological Sciences and Medicine, 4(1), 51-64.
Scharf K. D., Berberich T., Ebersberger I., Nover L. (2012). The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 104-119.
Su P. H., Li H. M. (2010). Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. The Plant Cell, tpc-109.
Venne A. S., Kollipara L., Zahedi R. P. (2014). The next level of complexity: crosstalk of posttranslational modifications. Proteomics, 14(4-5), 513-524.
Vierling E. (1991). The roles of heat shock proteins in plants. Annual review of plant biology, 42(1), 579-620.
Wang M., Casey P. J. (2016). Protein prenylation: unique fats make their mark on biology. Nature reviews Molecular cell biology, 17(2), 110.
Wang W. X., Vinocur B., Shoseyov O., Altman A. (2000). Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. In IV International Symposium on In Vitro Culture and Horticultural Breeding 560 (pp. 285-292).
Wang W., Vinocur B., Shoseyov O., Altman A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244-252.
Waters E. R., Lee G. J., Vierling E. (1996). Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany, 47(3), 325-338.
Wu J. R., Wang L. C., Lin Y. R., Weng C. P., Yeh C. H., Wu S. J. (2017). The Arabidopsis heat‐intolerant 5 (hit5)/enhanced response to aba 1 (era1) mutant reveals the crucial role of protein farnesylation in plant responses to heat stress. New Phytologist, 213(3), 1181-1193.
Yamada K., Fukao Y., Hayashi M., Fukazawa M., Suzuki I., Nishimura M. (2007). Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. Journal of Biological Chemistry, 282(52), 37794-37804.
Yoda H., Yamaguchi Y., Sano H. (2003). Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiology, 132(4), 1973-1981.
Yoshida T., Ohama N., Nakajima J., Kidokoro S., Mizoi J., Nakashima K., Maruyama K., Kim J. M., Seki M., Todaka D., Osakabe Y. (2011). Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics, 286(5-6), 321-332.
Zhang X. P., Glaser E. (2002). Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends in plant science, 7(1), 14-21.
Zhou W., Zhou T., Li M. X., Zhao C. L., Jia N., Wang X. X., Sun Y. Z., Li G. L., Xu M., Zhou R. G., Li B. (2012). The Arabidopsis J‐protein AtDjB1 facilitates thermotolerance by protecting cells against heat‐induced oxidative damage. New Phytologist, 194(2), 364-378.
Zhu J. K., Bressan R. A., Hasegawa P. M. (1993). Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature. Proceedings of the National Academy of Sciences, 90(18), 8557-8561. |