博碩士論文 104821024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.140.185.170
姓名 陳宣吟(Hsuan-Ying Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究
(Gene mapping of Arabidopsis hit4 revertants r13 and r34, and the study of their roles in the heat stress response in plants)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 阿拉伯芥突變種hit2之位址定位
★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位
★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究
★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位
★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究
★ 蛋白質法尼脂化修飾參與植株耐熱反應★ 探討ETO1-LIKE1(EOL1)及EOL2參與阿拉伯芥幼苗光形態發育之功能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 植物因無法自由移動,在面對環境逆境時,必須調整其生理反應,以求生存。近來因溫室氣體排放引起的全球暖化,對農作物形成高溫逆境。因此找尋植物的耐熱相關基因,並進一步瞭解其調控植物耐熱機轉,進而改善作物耐熱能力,便有其重要性與迫切性。本實驗室先前利用前向式遺傳研究法(forward genetic approach)篩選到一棵對持續性熱逆境及熱休克逆境敏感的突變株heat-intolerant 4 (hit4)。後續研究發現,HIT4是一個坐落在染色質中心,藉由調控染色質中心去凝縮(chromocenter decon-densation)現象,來提升植物耐熱力的蛋白質。為了更進一步瞭解HIT4耐熱調控機轉,本研究再次利用前向式遺傳研究法,從hit4植物挑選出能耐受持續性高溫的逆轉突變株(hit4 revertants),再以基因定位的方式,尋找致使hit4不耐熱性狀逆轉的突變基因。這些基因的產物,將很有可能是與HIT4共同調控植物耐熱能力之分子。本研究共篩選出兩株hit4逆轉突變株,分別命名為revertant 13 (r13)和revertant 34 (r34)。基因定位顯示,r13突變基因位於阿拉伯芥第二條色體底部;而r34突變株突變點則是位於編號At2g03050,名為SINGLET OXYGEN-LINKED DEATH ACTIVATOR 10(SOLDAT10)基因上,一個DNA鹼基由G變成A,使得相對應的胺基酸由Gly變成Arg的點突變。已知SOLDAT10基因表現出的蛋白質屬於mitochondrial transcription termination factor(mTERF)家族,有調控葉綠體轉錄作用之功能,並被推測參與在葉綠體到細胞核的逆向信號(retrograde signaling)及交叉抗性機制中。後續實驗將探討該基因是否參與在HIT4所調控的耐熱機制中,及其回復hit4突變株熱敏感性狀之機轉。
摘要(英) As sessile organisms, plants have developed sophisticated mechanisms to cope with both biotic and abiotic stresses from their living environment. In order to understand how plants survive under high temperature conditions, we used a forward genetic approach to isolate the Arabidopsis mutant heat tolerant 4 (hit4). The hit4 mutant is tested to be sensitive to either prolonged heat stress or sudden heat stress treatment. HIT4 was reported to mediate heat induced decondensation of chromocenters, which facilitates release of transcriptional gene silence(TGS). To better understand the underly mechanisms of and to identify more genetic determinants involved in the heat-triggered HIT4-dependent responses, I employed a forward genetic approach again to isolate two independent revertants of hit4. They were named revertant 13 (r13) and revertant 34 (r34), respectively. r13 is tolerant to prolonged heat stress but not sudden heat stress. DAPI-staining analysis showed that the chromocenters of r13 decondensed after heat treatment at 37°C for 30 hr. The map-based cloning indicated that r13 mutated locus is located at a region between AGI map 19,623 kb~19,698 kb of the chromosome II. r34 can tolerate both prolonged heat stress and sudden heat stress. The r34 mutated locus is mapped to At2g03050 which is known as SINGLET OXYGEN-LINKED DEATH ACTIVATOR 10(SOLDAT10). r34 is a missense mutation resulting in a change of the 442nd nucleotide from guanine to adenine which leads to a change of the 148th amino ac-id of the SOLDAT10 protein from glycine to arginine. SOLDAT10-GFP fusion protein was observed to locate in chloroplasts. Meanwhile, in r34, the chromocenters remained con-densed, and the heat-induced TGS release remaind attenuated under heat stress condition as observed in hit4. These results suggest that the better heat tolerant ability of r34 is not likely to involve HIT4 mediated mechanisms but derived from the enhanced thermotolerance of mutation at SOLDAT10.
關鍵字(中) ★ 高溫逆境
★ 前向式遺傳學
★ 阿拉伯芥
★ 染色質重塑
★ 逆向信號
★ 交叉抗性
關鍵字(英) ★ heat stress
★ forward genetic approach
★ Arabidopsis
★ chromatin remodeling
★ retrograde signaling
★ cross tolerance
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖表目錄 vii
緒論 1
材料與方法 5
1. 突變株位址定位 5
1-1 植物材料 5
1-2挑選定位之突變株 5
1-3以分子標記定位出突變基因所在位置 6
1-4 阿拉伯芥基因體萃取 8
2. 突變基因顯隱性之鑑定 9
3. 突變種之核苷酸定序 9
4. SOLDAT10基因之載體構築 10
4-1 插入DNA(SOLDAT10)之製備 10
4-2 載體製備 11
4-3 接合作用 (ligation) 12
4-4 大腸桿菌(DH5α)轉型作用(transformation) 12
4-5質體DNA萃取 13
5. 短時間致死性熱處理(Sudden Heat Stress, SHS)、長時間後天耐熱性獲得(Long term Acquired Thermotolerance, LAT)與短時間後天耐熱性獲得(Short term Acquired Thermotolerance, SAT)對r34生長表現型之測試 14
6. 及時定量聚合酶連鎖反應(quantitative real time polymerase chain reaction, qRT PCR) 15
7. SOLDAT10-GFP 載體在原生質體中表現 16
7-1 阿拉伯芥原生質體(protoplast)抽取 16
7-2 原生質體轉型(transformation) 16
8. DAPI(4′,6-diamidino-2-phenylindole)染色 18
9. 報導基因GUS (β-glucuronidase)染色實驗 18
實驗結果 19
1. r13突變株具有回復hit4突變株對持續性高溫(Prolonged Heat Stress, PHS)敏感之表現型 19
2. r13突變株之顯、隱性鑑定 19
3. r13突變株之突變點位址定位 19
4. r13突變株熱誘導染色質中心結構變化 20
5. r34突變株之表現型 20
5-1 r34突變株具有回復hit4突變株對PHS敏感之表現型 20
5-2 r34突變株對短時間致死性高溫(Sudden Heat Stress, SHS)之表現型 21
5-3 r34突變株對短期後天耐熱性(Short term Acquired Thermotolerance, SAT)之表現型 21
5-4 r34突變株對長期後天耐熱性(Long term Acquired Thermotolerance, LAT)之表現型 21
6. r34突變株之顯、隱性鑑定 22
7. r34突變株之突變點位址定位 22
8. r34突變株之核甘酸定序 23
9. r34突變株之胺基酸序列分析 23
9-1胺基酸結構及突變點所在位置 23
9-2胺基酸序列對比 23
10. SOLDAT10基因之構築 23
10-1互補試驗(complementary test)所用質體 23
10-2 SOLDAT10-GFP融合蛋白載體 24
11. SOLDAT10在細胞中表現位置 24
12. r34突變株熱誘導染色質中心結構變化 24
13. 以qPCR分析加熱前後內生性TGS loci genes之表現 25
14. 熱處理前後外源性TGS loci gene之表現 25
15. r34/HIT4之耐熱能力比較 26
討論 27
1. r13突變株分析及突變基因定位結果 27
2. r34突變基因定位結果與胺基酸序列探討 27
3. SOLDAT10蛋白質所在位置及功能之探討 28
4. SOLDAT10與非生物逆境之探討 29
4-1SOLDAT10與ROS和交叉抗性(cross-tolerance)之探討 29
4-2SOLDAT10與逆向信號之探討 31
5. r34回復hit4不耐熱性狀之探討 33
參考文獻 34
參考文獻 Asseng S., Ewert F., Martre P., et al. (2015). Rising temperatures reduce global wheat production. Nature Clim. Change 5: 143–147

Babiychuk E., Vandepoele K., Wissing J., Garcia-Diaz M., De Rycke R., Akbari H., Joubès J., Beeckman T., Jänsch L., Frentzen M., Van Montagu MC., Kushnir S. (2011). Plastid gene expression and plant development require a plastidic protein of the mi-tochondrial transcription termination factor family. Proc. Natl Acad. Sci. USA 108: 6674–6679

Bastow, R., Mylne, J. S., Lister, C., Lippman, Z., Martienssen, R. A., & Dean, C. (2004). Vernalization requires epigenetic silencing of FLC by histone methylation. Nature, 427(6970), 164.

Bowler C., Fluhr R. (2000). The role of calcium and activated oxygens as signals for con-trolling cross-tolerance. Trends Plant Sci 5: 241–245

Bowler C., Van Montagu M., Inze D. (1992). Superoxide dismutase and stress tolerance. Annu. rev. plant physiol. plant mol. biol. 43: 83–116

Chen, L. T., & Wu, K. (2010). Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant signaling & behavior, 5(10), 1318-1320.

Clare D. A. Rabinowitch H. D., Fridovich I. (1984). Superoxide dismutase and chilling injury in Chlorella ellipsoidea. Arch. Biochem. Biophys. 231: 158–163

Estavillo G. M., Chan K. X., Phua S. Y., Pogson B.J. (2012). Reconsidering the nature and mode of action of metabolite retrograde signals from the chloroplast. Front. Plant Sci. 3:300

Jeong S. Y., Rose A., Meier I. (2003). MFP1 is a thylakoid-associated, nucleoid-binding protein with a coiled-coil structure. Nucleic Acids Research 31: 5175-5185

Johannes, F., & Colomé-Tatché, M. (2011). Quantitative epigenetics through epigenomic perturbation of isogenic lines. Genetics, 188(1), 215-227.

Karpinski S., Reynolds H., Karpinska B., Wingsle G., Creissen G., Mullineaux P. (1999). Systemic signaling and acclimation in response to excess excitation energy in Ara-bidopsis. Science 284: 654–657

Kim M., Lee U., Small I., des Francs-Small C. C., Vierling E. (2012). Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance thermo-tolerance in the absence of the major molecular chaperone HSP101. Plant Cell 24: 3349–3365

Kleine T. (2012). Arabidopsis thaliana mTERF proteins: evolution and functional classifica-tion. Front Plant Sci. 3: 233

Kleine T., Maier U. G., Leister D. (2009). DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 60: 115–138

Krupinska K., Melonek J., Krause K. (2013). New insights into plastid nucleoid structure and functionality. Planta 237: 653–664

Kruse B., Narasimhan N., Attardi G. (1989). Termination of transcription in human mito-chondria: identification and purification of a DNA-binding protein factor that promotes ter-mination. Cell 58: 391–397

Ledford H. K., Chin B. L., Niyogi K. K. (2007). Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot Cell 6:919–930

Leister, D. (2012). Retrograde signaling in plants: from simple to complex scenarios. Front. Plant Sci. 3: 135

Leister D., Kleine T. (2016). Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies GLK overexpressors as gun mutants. Physiol. Plant 157: 297–309

Majeran W., Friso G., Asakura Y., Qu X., Huang M., Ponnala L., et al. (2012). Nucle-oid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions, Plant Physiol. 158: 156-189

Meskauskiene R., Wursch M., Laloi C., Vidi P.A., Coll N.S., Kessler F., Baruah A., Kim C., Apel K. (2009). A mutation in the Arabidopsis mTERF-related plastid protein SOLDAT10 activates retrograde signaling and suppresses1O2-induced cell death. Plant J. 60: 399–410

Miller G., Shulaev V., Mittler R. (2008). Reactive oxygen signaling and abiotic stress. Physiol. Plant 133: 481–489

Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490–498

Muhlenbock P., Szechynska-Hebda M., Plaszczyca M., Baudo M., Mullineaux P. M., Parker J.E., Karpinska B., Karpinski S. (2008). Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. The Plant Cell 20: 2339–2356

Mylne, J. S., Barrett, L., Tessadori, F., Mesnage, S., Johnson, L., Bernatavichute, Y. V., ... & Dean, C. (2006). LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proceedings of the National Academy of Sciences, 103(13), 5012-5017.

Neill S. J., Desikan R., Clarke A., Hurst R. D., Hancock J. T. (2002). Hydrogen peroxide and nitric oxide as signaling molecules in plants. J. Exp. Bot. 53: 1237–1247

Oelmuller R., Levitan I., Bergfeld R., Rajasekhar V. K., Mohr H. (1986). Expression of nuclear genes as affected by treatments acting on the plastids. Planta 168: 482–492

Orozco-Cárdenas M.L., Narváez-Vásquez J., Ryan C.A. (2001) Hydrogen peroxide acts as a second messenger for the induction of defence genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13: 179–191

Pecinka, A., Dinh, H. Q., Baubec, T., Rosa, M., Lettner, N., & Scheid, O. M. (2010). Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Ara-bidopsis. The Plant Cell, 22(9), 3118-3129.

Pesaresi P., Schneider A., Kleine T., Leister D. (2007). Interorganellar communication. Curr Opin Plant Biol 10: 600–606

Powikrowska M., Oetke S., Jensen P. E., Krupinska K. (2014). Dynamic composition, shaping and organization of plastid nucleoids. Front. Plant Sci. 5: 424

Prasad T. K., Anderson M. D., Stewart C. R. (1994). Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiology 105:619–627

Probst, A. V., Fagard, M., Proux, F., Mourrain, P., Boutet, S., Earley, K., ... & Vaucheret, H. (2004). Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. The Plant Cell, 16(4), 1021-1034.

Quesada V., Sarmiento-Manus R., Gonzalez-Bayon R., Hricova A., Perez-Marcos R., Gracia-Martinez E., Medina-Ruiz L., Leyva-Diaz E., Ponce M. R., Micol J. L. (2011). Arabidopsis RUGOSA2 encodes an mTERF family member required for mitochondrion, chloroplast and leaf development, Plant J. 68: 738-753

Rabinowitch H. D., Fridovich I. (1985). Growth of Chlorella sorokiniana in the presence of sulfite elevates cell content of superoxide dismutase and imparts resistance towards para-quat. Planta 164: 524–528

Roberti M., Polosa P. L., Bruni F., Manzari C., Deceglie S., Gadaleta M. N., Cantatore P. (2009). The MTERF family proteins: Mitochondrial transcription regulators and beyond. Biochim Biophys Acta 1787: 303–311

Robles P., Micol J. L., Quesada V. (2012) Arabidopsis MDA1, a Nuclear-Encoded Protein, Functions in Chloroplast Development and Abiotic Stress Responses. PLoS ONE 7: e42924

Robles P., Micol J. L., Quesada V. (2015). Mutations in the plant-conserved MTERF9 alter chloroplast gene expression, development and tolerance to abiotic stress in Arabidopsis tha-liana. Physiol. Plant. 154: 297–313

Sakai A., Takano H., Kuroiwa T. (2004). Organelle nuclei in higher plants: structure, composition, function, and evolution. Int. Rev. Cytol. 238: 59–118

Sakamoto W., Miyagishima S. Y., Jarvis P. (2008). Chloroplast biogenesis: control of plas-tid development, protein import, division and inheritance. Arabidopsis Book 6: e0110

Sharma Y. K., Léon J., Raskin I., Davis K. R. (1996). Ozone-induced responses in Ara-bidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci USA. 93(10):5099-104

Sullivan J. A., Gray J. C. (1999). Plastid translation is required for the expression of nucle-ar photosynthesis genes in the dark and in roots of the pea lip1 mutant. Plant Cell 11: 901–910
Sun A. Z., Guo F. Q. (2016). Chloroplast retrograde regulation of heat stress responses in plants. Front. Plant Sci.7:398

Sung, S., & Amasino, R. M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 427(6970), 159.

Sung, S., He, Y., Eshoo, T. W., Tamada, Y., Johnson, L., Nakahigashi, K., ... & Amasi-no, R. M. (2006). Epigenetic maintenance of the vernalized state in Arabidopsis thaliana re-quires LIKE HETEROCHROMATIN PROTEIN 1. Nature genetics, 38(6), 706.

Susek R. E., Ausubel F. M., Chory J. (1993). Signal-transduction mutants of Arabidopsis uncouple nuclear cab and rbcs gene-expression from chloroplast development. Cell 74: 787–799

Suzuki N., Koussevitzky S., Mittler R., Miller G. (2012). ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ. 35: 259–270

Tittel-Elmer, M., Bucher, E., Broger, L., Mathieu, O., Paszkowski, J., & Vaillant, I. (2010). Stress-induced activation of heterochromatic transcription. PLoS genetics, 6(10), e1001175.

Wang L. C., Wu J. R., Chang W. L., Yeh C. H., Ke Y. T., Lu C. A., Wu S. J. (2013). Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reac-tivation of transcriptionally silent loci and is essential for heat tolerance in plants. J. Exp. Bot. 64: 1689–1701

Wang, L. C., Wu, J. R., Hsu, Y. J., & Wu, S. J. (2015). Arabidopsis HIT 4, a regulator involved in heat‐triggered reorganization of chromatin and release of transcriptional gene si-lencing, relocates from chromocenters to the nucleolus in response to heat stress. New Phy-tologist, 205(2), 544-554.

Wu G., Shortt B. J., Lawrence E. B., Levine E. B., Fitzsimmons K. C., Shah D. M. (1995). Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell. 7(9):1357–1368

Xu D., Leister D., Kleine T. (2017). Arabidopsis thaliana mTERF10 and mTERF11, but Not mTERF12, Are Involved in the Response to Salt Stress. Frontiers in Plant Science. 8: 1213

Yakubovskaya E., Mejia E., Byrnes J., Hambardjieva E. Garcia-Diaz M. (2010). Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcrip-tion. Cell 141: 982–993

Yalpani N., Enyedi A. J., León J., Raskin I. (1994). Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta. 193:372–376

Yoshida R., Sato T., Kanno A., Kameya T. (1998). Streptomycin mimics the cool temper-ature response in rice plants. J. Exp. Bot. 49: 221–227

Yu H. D., Yang X. F., Chen S. T., Wang Y. T., Li J. K., Shen Q., et al. (2012). Downreg-ulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis. PLoS Genet. 8: e1002669
指導教授 吳少傑(Shaw-Jye Wu) 審核日期 2019-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明