博碩士論文 104825007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:52.6.70.202
姓名 連玉慧(Yu-Huei Lian)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 對不同感官類型與相鄰性、非相鄰性規則之統計學習能力的個體差異
(The Individual Difference in Statistical Learning of Adjacent and Non-adjacent Regularities in Different Modalities)
相關論文
★ The influence of experience on the SNARC effect -the mapping between sequential information and spatial representation★ 中文名詞動詞的具體效果的神經相關活動
★ 字形和語意對短期記憶的影響: 從行為及腦造影實驗而來的證據★ 中文字音與字形相似度對語言短期記憶之影響
★ 非語音訊息對中英雙語使用者的語言短期記憶的貢獻★ 中文短期記憶之字形表徵研究
★ The temporal dynamics of the code-switching between alphabetic and logographic languages in unbalancedChinese-English bilinguals★ The acquisition of Chinese literacy as a second language correlates with statistical learning of implicit transitional probability
★ 以行為及腦造影證據探討英文字音及字形相似效果對中英雙語使用者之短期記憶的影響★  The behavioral and neural correlates of orthographic lexicon and orthographic buffer in Chinese writing
★ EXPLORATION OF THE NEURAL CORRELATES OF SYNTACTIC PROCESSING IN CHINESE USING FUNCTIONAL MAGNETIC RESONANCE IMAGING AND EVENT-RELATED POTENTIALS★ 視知覺相關能力以及統計學習能力對中文識字學習的影響:來自以中文為母語或外語學習者的證據
★ Correlation of statistical learning of different implicit transitional probabilities with Chinese literacy acquisition in non-native adult learners★ 金錢酬賞之來源與其分配對公平性感知的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-8-20以後開放)
摘要(中) 統計學習能力為影響生物生存的一種重要能力,可以幫助生物從環境裡眾多訊息當中快速且正確的提取必要的資訊,經過歸納分析,使之用於適應生存。因此,越來越多的研究開始關注這種學習能力。先前的研究已經發現若訊息之間存在著一定的關連性,人類可以透過統計學習能力來抓取含有複雜規則的資訊,且個體對於這樣的過程並不一定有清楚的自我察覺。當外在訊息透過感官通道將訊號傳入大腦,會先轉換為內在表徵而讓大腦能進行組織與處理,而接著便透過統計學習將這些資訊進行分析而擷取出其中的關連性,最後表現於學習者擷取規則的能力。學習者在處理不同的感官資訊時,這一連串的過程皆可能存在能力的差異,因此同一個學習者在處理不同的感官刺激或是不同類型的規則時,也可能存在統計能力表現的差異性。但是,先前的研究大多著重於學習相鄰性規則的研究,然而環境中許多訊息是包含非相鄰性規則的,因此本研究在參考以往相鄰性統計學習能力測驗以及人工文法學習測驗設計的基礎上,設計了一套新的非相鄰性統計學習測驗。這系列測驗包含了聽覺與視覺的不同版本,來探討在不同感官通道下相鄰性和非相鄰性統計學習能力之間的異同。除此之外,其他測量一般認知能力的測驗,包括智力測驗、口語工作記憶測驗、視覺空間工作記憶測驗與執行功能測驗也被應用在本研究中作為考量的因素,來確認統計學習能力的獨立性。不僅如此,本實驗更關注個體差異在統計學習能力不同方面的表現,因此本實驗以受試者內設計為主,去觀察各項統計學習能力之間的關係。研究發現學習者不僅能很快學習到相鄰性規則,而且也能夠很快學習到非相鄰性的規則。再者,結果顯示受試者之統計學習能力的表現是會受到不同感官刺激所影響,同一受試者在學習相鄰性規則時,其聽覺與視覺的表現並不一致,但在學習非相鄰規則時,聽覺與視覺的表現具有高度相關。這些證據也進一步支持了目前統計學習能力理論模型中的感官特定性。
摘要(英) Statistical learning is an important ability in the human life, which can help us extract necessary information from the environment effectively and further transfer the information to be specific rules for living. Therefore, an increasing number of studies have paid much attention on this aspect of research to explore the nature of statistical learning ability. Previous studies have shown that when there are certain relationships embedded in the information, human beings could learn the complex and innate rules from the information by using statistical learning ability. Moreover, the process underlying such learning has been proposed to be largely implicit and unconscious to participants. When the information is perceived by the brain through different sensory modalities, it is firstly transferred to form inner representations, and then is organized and processed by the brain for the extraction of the input information. Such process to extract the specific rules without awareness has been claimed to rely on individual ability of statistical learning. Besides, there is significant individual difference during processing different sensory inputs. Therefore, the specificity of statistical learning ability within the same learners cannot be ignored. It seems that even the same learners process different sensory materials or learn different kinds of rules, the performance based on the statistical learning ability is still different. However, most of the previous studies mainly focused on statistical learning of the dependency of adjacent items, while few studies explored the statistical learning ability of dependency of non-adjacent items, which is also frequent in the information in the real world. Given such background, the present study attempted to design new statistical learning tests to measure the non-adjacent statistical learning ability based on the previous tests of adjacent statistical learning and artificial-grammar learning. This series of tests not only include the visual version but also the auditory version to compare the levels of statistical learning ability when processing adjacent and non-adjacent materials in different modalities. Besides, other tests of general cognitive abilities, including an IQ test, a verbal working memory test, a visual spatial working memory test and an executive function test, have also been applied to observe these cognitive abilities across different learners, and to explore whether the statistical learning ability is independent of the other cognitive functions. The main aims of this study is to explore 1) the individual difference of the different aspects of statistical learning ability and 2) the relationship between the different statistical learning abilities learning different types of rules or from different modalities within the same group of participants. The results showed that the learners could not only learn the adjacent rules but also the non-adjacent rules with enough inputs. Moreover, the performance of statistical learning was affected by different sensory inputs, as reflected by uncorrelated performance in the visual and auditory modalities, especially when the rule to be learned was dependency among adjacent items. Interestingly, the performance of statistical learning in the visual and auditory modalities was correlated significantly when the rule to be learned as dependency among non-adjacent items. In sum, the findings in the present study further support the current theoretical model in demonstrating modality specificity in statistical learning ability.
關鍵字(中) ★ 統計學習能力 關鍵字(英) ★ statistical learning
論文目次 摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 VIII
第一章、文獻回顧 1
1.1 統計學習能力之概念 1
1.2 統計學習能力的跨域性與特定性 2
1.3 不同感官與不同刺激類型的統計學習 4
1.4 統計學習能力於神經生理學中的證據 8
1.5 研究目的 10
2.1 一般認知能力指標 11
2.1.1 圖形設計測驗 (Block Design) 11
2.1.2視覺空間工作記憶測驗 (Symmetry Span) 11
2.1.3口語短期記憶測驗 (Digit Span) 11
2.1.4執行功能測驗 (Zodiac-Number Sequencing) 11
2.2 統計學習能力 12
2.2.1 相鄰性視覺統計學習 (adjacent visual SL) 13
2.2.2 相鄰性聽覺統計學習 (adjacent auditory SL) 15
2.2.3 非相鄰性視覺統計學習-序列呈現版 (non-adjacent sequential visual SL) 19
2.2.4 非相鄰性聽覺統計學習 (non-adjacent auditory SL) 23
2.2.5 非相鄰性視覺統計學習-同時呈現版 (non-adjacent simultaneous visual SL) 27
2.2.6 空間性視覺統計學習 (spatial visual SL) 30
第三章、主要研究 32
3.1 研究方法 32
3.1.1 研究對象 32
3.1.2 研究材料 32
3.1.3 研究程序 32
3.2 研究結果 34
3.2.1 統計學習能力於團體層次與個別層次之表現 34
3.2.2 不同類型的規則學習之相關性 42
3.2.3 再測信度 47
3.3 討論 48
第四章、綜合討論 55
4.1 統計學習能力之感官特定性 55
4.1.1視覺統計學習能力的特點 55
4.1.2聽覺統計學習能力的特點 56
4.1.3視覺和聽覺統計學習能力的異同點 56
4.2 統計學習能力之個體差異 57
4.2.1 個體差異的具體表現 57
4.2.2 個體學習能力的穩定性 57
4.3 統計學習能力與一般認知能力之關聯 58
4.4 統計學習能力測驗之發展 59
4.5 結論 60
參考文獻 62
參考文獻 Aslin, R. N. & Newport, E. L. (2012) Statistical learning: From acquiring specific items to forming general rules. Current directions in psychological, 21(3): 170–176.
Baker, C. I., Olson, C. R. & Behrmann, M. (2004) Role of Attention and Perceptual Grouping in Visual Statistical Learning. Psychological Science, 15(7): 460-466.
Bulf, H., Johnson S. P. & Valenza E. (2011) Visual statistical learning in the newborn infant. Cognition, 121: 127-132.
Conway, C. M. & Christiansen, M. H. (2005) Modality-Constrained Statistical Learning of Tactile, Visual, and Auditory Sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1): 24-39.
Conway, C. M. & Christiansen, M. H. (2006) Statistical Learning Within and Between Modalities. Psychological Science, 17(10): 905-912.
Conway, C. M. & Pisoni, D. B. (2008) Neurocognitive Basis of Implicit Learning of Sequential Structure and Its Relation to Language Processing. New York Academy of Sciences, 1145: 113-131.
Evans, J. L., Saffran, J. R. & Robe-Torres, K. (2009) Statistical Learning in Children with Specific Language Impairment. American Speech-Language-Hearing Association, 52(2).
Fiser, J. & Aslin, N. (2001) Unsupervised Statistical Learning of Higher-Order Spatial Structures from Visual Scenes. Psychological Science, 12(6): 499-504.
Foster, J. L., Shipstead, Z., Harrison, T. L. (2014) Shortened complex span tasks can reliably measure working memory capacity. Memory & Cognition.
Frost, R., Siegelman, N., Narkiss, A. & Afek, L. (2013) What Predicts Successful Literacy Acquisition in a Second Language? Psychological Science, 24(7) 1243-1252.
Frost, R., Armstrong, B. C., Siegelman, N. & Christiansen, M. H. (2015) Domain generality versus modality specificity: the paradox of statistical learning. Trends in Cognitive Sciences, 19(3): 118-125.
Gebhart, A. L., Newport, E. L., Aslin, N. (2009) Statistical learning of adjacent and nonadjacent dependencies among nonlinguistic sounds. Psychonomic Bulletin & Review, 16(3): 486-490.
Glicksohn, A. & Cohen, A. (2013) The role of cross-modal associations in statistical learning. Psychonomic Bulletin & Review, 20: 1161-1169.
Gomez, R. W. & Gerken, L. (2000) The basis of transfer in artificial grammar learning. Memory & Cognition, 28(2): 253-263.
Gomez, R. W. (1997) Transfer and Complexity in Artificial Grammar Learning.
Cognitive Psychology, 33: 154-207.
Gomez, R. W. (2002) Variability and Detection of Invariant Structure. Psychological Science, 13(5): 431-436.
Hsu, H. J., Tomblin J. B. & Christiansen, M. H. (2014) Impaired Statistical Learning of Non-adjacent Dependencies in Adolescents with Specific Language Impairment. Frontiersin Psychology, 5(175): 1-10.
Hunt, R. H. & Aslin, R. N. (2001) Statistical Learning in a Serial Reaction Time Task: Access to Separable Statistical Cues by Individual Learners. Journal of Experimental Psychology, 130(4): 658-680.
Karuza, E. A., Newport, E. L., Aslin, R. N., Starling, J. S. (2013) The neural correlates of statistical learning in a word segmentation task: An fMRI study. Brain & Language, 127: 46-54.
Kirkham, N. Z., Slemmer, J. A., Johnson, S. P. (2002) Visual statistical learning in infancy: evidence for a domain general learning mechanism. Cognition, 83: B35-B42.
Misyak, J. B. & Christiansen, M. H. (2012) Statistical Learning and Language: An Individual Differences Study. Language Learning, 62(1): 302-331.
Misyak, J. B., Christiansen, M. H. (2010) Sequential Expectations: The Role of Prediction-Based Learning in Language. Topics in Cognitive Science 2, 138-153.
Newport, E. L & Aslin, R. N. (2004) Learning at a distance I. Statistical learning of non-adjacent dependencies. Cognitive Psychology, 48: 127-162.
Newport, E. L, Hauser M.D., Spaepen G. & Aslin R. N. (2004) Learning at a distance II. Statistical learning of non-adjacent dependencies in a non-human primate. Cognitive Psychology, 49: 85-117.
Pelucchi, B., Hay. J. F. & Saffran J. (2009) Statistical Learning in a Natural Language by 8-Month-Old Infants. 80(3): 674-685.
Perruchet, P. & Pacton, S. (2006) Implicit learning and statistical learning: one phenomenon, two approaches. Trends in Cognitive Sciences, 10(5): 233-238.
Perruchet, P. & Peereman, R (2004) The exploitation of distributional information in syllable processing. Journal of Neurolinguistics, 17: 97-119.
Perruchet, P., Vinter, A., Pacteau, C. & Gallego, J. (2002) The formation of structurally relevant units in artificial grammar learning. The Quarterly Journal of Experimental Psychology, 55A(2): 485-503.
Redick, T.S., Broadway, J. M., Meier, M.E., Kuriakose, P.S., Unsworth, N., Kane, M.
J. & Engle R.W. (2012) Measuring Working Memory Capacity With Automated Complex Span Tasks. European Journal of Psychological Assessment, 28(3): 164-171
Saffran, J. R., Aslin, R. N. & Newport E. L. (1996) Statistical Learning by 8 Month Old Infants. Science, 274(5294): 1926-1928.
Saffran, J. R. (2001) Words in a sea of sounds: the output of infant statistical learning. Cognition, 81: 149-169.
Schapiro, A. C. Gregory, E., Landau, B. (2014) The Necessity of the Medial Temporal Lobe for Statistical Learning. Journal of Cognitive Neuroscience, 26(8): 1736-1747.
Siegelman, N. & Frost, R. (2015) Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. Journal Memory Language, 81:105-120.
Siegelman, N., Bogaerts L., Christiansen, M. H. & Frost, R. (2017) Towards a theory of individual differences in statistical learning. Philosophical Transactions B, 372(1711):1-10.
Siegelman, N., Bogaerts L., Kronenfeld, O. & Frost, R. (2018) Redefining “Learning” in Statistical Learning: What Does an Online Measure Reveal About the Assimilation of Visual Regularities? Cognitive Science, 42(S3): 692-727.
Siegelman, N., Bogaerts L. & Frost, R. (2017) Measuring individual differences in statistical learning: Current pitfalls and possible solutions. Behavior Research, 49: 418-432.
Toro, J. M. & Trobalon, J. B. (2005) Statistical computations over a speech stream in a rodent. Perception & Psychophysics, 67(5): 867-875.
Toro, J. M., Sinnett, S., & Soto-Faraco, S. (2005) Speech segmentation by statistical learning depends on attention. Cognition, 97: B25-B34.
Turk-Browne, N. B., Junge’, J. A. & Scholl, B. J. (2005) The Automaticity of Visual Statistical Learning. Journal of Experimental Psychology, 134(4):552-564.
Turk-Browne, N. B., Scholl, B. J., Chun, M. M., Johnson, M. K. (2009) Neural Evidence of Statistical Learning: Efficient Detection of Visual Regularities Without Awareness. Journal of Cognitive Neuroscience, 21(10): 1934-1945.
Vuong, L. C., Meyer, A. S. & Christiansen, M. H. (2016) Concurrent Statistical Learning of Adjacent and Nonadjacent Dependencies. Language Learning, 66(1): 8-30.
指導教授 吳嫻(Denise H. Wu) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明