博碩士論文 104827006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.239.109.55
姓名 孫仁厚(Jen-Hou Sun)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能
(Design and Establishment of a Synthetic Perfluorocarbon Photobioreactor System for Carbon Dioxide Separation and Enhancement of Microalgal Growth and Productions)
相關論文
★ 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響★ 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉
★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell★ 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究
★ 研製包覆靛氰綠與絲裂黴素C之標靶全氟碳奈米乳劑應用於膀胱癌光-化學治療之研究★ 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療
★ 可動態改變外翻力矩的治療退化性膝關節炎輔具★ 聚乙二醇對於擬球藻生長與脂質堆積之影響
★ 製備包覆靛氰綠及阿黴素之聚乳酸甘醇酸-聚乙二醇交聯標靶奈米粒子用於乳癌光/化學治療之研究★ 研製包覆靛氰綠與阿黴素之標靶氟化奈米乳劑用於乳癌光/化學治療之研究
★ 研究設計全氟碳化物光生物反應器系統用以純化沼氣並藉此提升微藻生物質及生質能源之產量★ 針對糖尿病足潰瘍設計並製作一種抗菌且能促進傷口癒合的甲殼素複合式水凝膠之研究
★ 利用PLGA微球載體結合超聲波駐波場以提高巨噬細胞藥物輸送之效率★ 以血流動力系統探討血管內皮細胞在尼古丁刺激下對層流剪應力之型態異常與自體凋亡之表現變化
★ 以板式流道系統模擬血管內皮細胞於層流剪力影響下受尼古丁刺激產生發炎反應之研究★ 結合超聲波駐波場與層堆疊自體組裝微球載體建構提高分子傳遞至細胞內效率之方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著溫室效應之日益受到重視,如何降低碳排放以及去除大氣層中過高比例的CO2已成為國際間重視的環保議題。為了有效去除混合氣體中的CO2並同時達成經濟產值的提升,本研究建構出一以全氟碳化物(Perfluorocarbon;PFC)為媒介之光生物反應器組(Perfluorinated Photobioreactor System;PPBRS)。本系統利用PFC優異的CO2吸收能力進行分離混合氣體中的CO2,並將PFC所吸收到的CO2以適當比例(v/v)輸送至擬球藻生長的光生物反應器瓶中,而擬球藻行光合作用所產生出O2再藉由PFC的傳遞導入另一單元中作收集。首先在單獨給予擬球藻不同濃度CO2並研究何種濃度為最適合擬球藻生長濃度實驗中發現,2% CO2的成長優於其他濃度組別(1 - 12%),經與對照組(純打入空氣之組別)比較後發現,10天內的擬球藻細胞濃度多了2倍,生物質(Biomass)提高了1.25倍、總脂質(Total lipid)提高了1.57倍而二十碳五烯酸(eicosapentaenoic acid,EPA)提高了1.37倍。之後在實際於PPBRS全系統操作10天中,我們以60% N2 - 40% CO2作為模擬混合氣體並將其輸入至含有PFC的氣體純化分離單元,其吸附CO2的PFC再搭配吸附N2的PFC使其含有2% (v/v)的二氧化碳比例來供給擬球藻生長。結果顯示,PPBRS能在10天的操作下,有效的分離出混合氣體中的N2並其內的CO2濃度維持在4%以下;與對照組(單純打入空氣)比較,PPBRS組內的擬球藻細胞濃度提高了2.64倍;總生物質提高了2.17倍、總脂質提高了2.92倍、EPA提高了3.08倍;而期間的氧氣收集效率約為82.7%。綜合以上所述,本研究所開發的全氟碳化物光生物反應器系統組(PPBRS)提供了一個有效分離CO2、收集O2並能同時提升擬球藻生長與其經濟作物(生物質, 總脂質, EPA)產量之技術方法。
摘要(英) The method to reduce carbon emission and remove excessive CO2 in the atmosphere has become an international environmental issue since greenhouse effect has gained increasing attention in the world. In order to effectively remove CO2 from the mixture and simultaneously increase the economic output, a synthetic photobioreactor system, named perfluorinated photobioreactor system (PPBRS) was established in this study. The system is aimed to utilize the excellent CO2 absorption capacity of the PFC to isolate the CO2 from the mixed gas and deliver the absorbed CO2 under an appropriate ratio (v/v) to the photobioreactor for an improved microalgal growth. Furthermore, the O2 generated from the microalgae photosynthesis will be transferred through PFC adsorption and collected in another container. Our data showed that the 2% (v/v) CO2 brought by PFC may provide the highest growth rate of N. oculata compared to the ones with other settings (1 - 12% (v/v) CO2). In comparison to the cells growing with air, the cells with 2% (v/v) CO2 supply for 10 days exhibited 2-, 1.25-, 1.57-, and 1.37-fold increases of cell concentration, amounts of biomass, total lipid, and eicosapentaenoic acid (EPA), respectively. In terms of PPBRS operation for 10 days where a mixture gas of 60% N2 - 40% CO2 was employed as the model mixed gas, the results showed that the PPBRS was able to effectively isolate CO2 through PFC adsorption and maintain the CO2 concentration in the output N2 in  4% for up to 10 days. In comparison to the group with air injection throughout the time course, our data showed that the cells cultured with PPBRS provided 2.64-fold increase of cell density; 2.17-fold increase of total biomass amount; 2.92-fold increase of total lipid amount, and 3.08-fold increase of EPA production. In additional, the oxygen collection rate was about 82.7% based on the numerical evaluation. Taken together, the developed PPBRS may serve as an effective means for simultaneous CO2 separation, O2 collection, and enhanced microalgae/N. oculata productions that is highly applicable for use in the industry.
關鍵字(中) ★ 擬球藻
★ 光生物反應器
★ 全氟碳化物
★ 生物質
★ 生物脂質
★ 二氧化碳分離
★ 氧氣收集
關鍵字(英) ★ Microalgae
★ Photobioreactor
★ Perfluorocarbon
★ Biolipid
★ CO2 separation
★ oxygen collection
論文目次 誌謝 I
摘要 II
Abstract IV
圖目錄 XI
表目錄 XIII
附表目錄 XIV
第一章前言 1
1-1 研究背景 1
1-2研究動機與目的 4
第二章 文獻探討 5
2-1 溫室氣體 5
2-1-1 二氧化碳於溫室效應 5
2-2 溫室氣體對環境之影響 6
2-2-1 其他溫室氣體對環境之影響 7
2-3 二氧化碳分離技術 8
2-3-1 化學吸收法 8
2-3-2 物理吸收法 8
2-3-3 化學吸附法 9
2-3-4 物理吸附法 9
2-3-5 冷凍分離法 9
2-3-6 薄膜分離法 10
2-3-7 固態化學吸收法 10
2-3-8 生物反應法 10
2-4 微藻介紹 11
2-5 擬球藻介紹 14
2-6 影響微藻生長的環境因子 16
2-6-1 二氧化碳 16
2-6-2 氮源濃度 17
2-6-3 鹽度 18
2-6-4 酸鹼值 18
2-6-5 溫度 19
2-6-6 氧氣 19
2-7 藻類收集方法 21
2-7-1 離心法 21
2-7-2 過濾法 21
2-7-3 凝絮法 22
2-8光生物反應器之分類與技術發展 23
2-8-1 反應器的設計 24
2-9 全氟碳化物 26
2-9-1 全氟碳化物細胞培養與保存技術 28
第三章 實驗方法與材料 29
3-1 實驗設計 29
3-2 實驗器材與藥品 30
3-3. 韋因培養基(Walnes’ medium)成分 35
3-4 藻種來源與培養 36
3-5 擬球藻脂質之萃取 37
3-6 擬球藻脂質中EPA之含量分析 38
3-7 全氟碳化物對模擬混合氣體之純化效率分析 39
3-8 以全氟碳化物對模擬光生物反應器進行氧氣收取效率分析 39
3-9 數據和統計分析 42
第四章 結果與討論 43
4-1 以不同的通氣速率對擬球藻進行培養之影響 43
4-2 探討以不同二氧化碳體積百分比濃度對擬球藻培養之影響 46
4-2-1 光生物反應器(擬球藻培養環境) 46
4-3 二氧化碳對於擬球藻總脂質及EPA產量之影響 52
4-4 FC-40純化效能測試與討論 54
4-4-1 氣體純化單元 54
4-4-2 氣體純化能力實驗結果與討論 54
4-5 氧氣收取效能測試與討論 59
4-5-1 氧氣收取系統 59
4-5-2 氧氣收取效率結果與討論 59
4-6 PPBRS同時於微藻養殖與氣體純化以及收集效能測試與討論 63
4-6-1 PPBRS對於擬球藻生長以及氣體收集效能之探討 63
4-6-2 PPBRS對於擬球藻總脂質以及EPA之影響 68
第五章 結論 70
第六章 未來展望 71
參考文獻 72
附錄 81
參考文獻 1. 彭冠傑。2012。我國沼氣回收再利用之環境與經濟效益評估。
2. 謝誌鴻。1999。微藻培養與微藻油脂生產之研究。
3. 葉昱伶。2013。聚乙二醇對於擬球藻生長與脂質堆積之影響。
4. Kenneth C. Lowe, Michael R. Davey and J. Brian PowerPerfluorochemicals: their applications and benefits to cell culture, 1998.
5. 陳玫佐。2010。生質沼氣發酵特性之研究。
6. Sheng-Yi Chiu, Chien-Ya Kao, Ming-Ta Tsai, Seow-Chin Ong, Chiun-Hsun Chen, Chih-Sheng Lin. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology 100, 2009. 100(2): p. 833–838.
7. L. Meier, R. Perez, L. Azocar, M. Rivas, D. Jeison. Photosynthetic CO2 uptake by microalgae: An attractive tool for biogas upgrading, biomass and bioenergy, 2015. 73: p. 102-109.
8. Yu-Hsiang Lee, Yu-Ling Yeh, Keng-Hsien Lin. Using fluorochemical as oxygen carrier to enhance the growth of marine microalga Nannochloropsis oculata, Bioprocess Biosyst Eng, 2013. 36(8): p. 1071–1078.
9. Yu-Hsiang Lee, Yu-Ling Yeh., Reduction of oxygen inhibition effect for microalgal growth using fluoroalkylated methoxy polyethylene glycol-stabilized perfluorocarbon nano-oxygen carriers, Process Biochemistry, 2015. 50(7): p. 1119–1127.
10. Yongmanitchai, W. and O.P. Ward, Screening of algae for potential alternative sources of eicosapentaenoic acid. Phytochemistry, 1991. 30(9): p. 2963-2967.
11. Sublette, M. E., Ellis, S. P., Geant, A. L., Mann, J. J., Meta-analysis: effects of eicosapentaenoic acid in clinical trials in depression. The Journal of clinical psychiatry, 2011. 72(12): p. 1577.
12. Li, Q., Du, W., and Liu, D., Perspectives of microbial oils for biodiesel production, Appl. Microbiol. Biotechnology, 2008. 80 (5): p. 749-756.
13. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., and Hankamer, B., Second generation biofuels: high-efficiency microalgae for biodiesel production, Bioenergy. Res., 2008. 1 (1): p. 20-43.
14. White, C. M., Strazisar, B. R., Granite, E. J., Hoffman, J. S., and Pennline, H. W., Separation and capture of CO2 from large stationary sources and sequestration in geological formations – Coalbeds and deep saline aquifers, Journal of the Air & Waste Management Association, 2003, Vol. 53(6): p. 645‐715.
15. IPCC Special Report on Carbon dioxide Capture and Storage, Chapter 3 (CO2 Capture) and Chapter 8 (CCS Cost), 2005.
http://www.ipcc.ch/activity/srccs/index.htm.
16. D. Aaron, and C. Tsouris., Separation of CO2 from flue gas: A review. Separation science and technology, 2005. vol.40: p. 321-348.
17. C. W. Chan., Paitoon, Tontiwachwuthikul. A decision support system for solvent of CO2 separation process. Energy conversion, 1996. vol.37: p. 941-946.
18. Song, C., Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catalysis Today, 2006, Vol. 115: p. 2‐32.
19. Gray, M. L., Soong, Y., Champagne, K. J., Pennline, H., Baltrus, J. P., and Stevens, R. W., “Improved immobilized carbon dioxide capture sorbents” Fuel Processing Technology, 2005, Vol.86: p. 1449‐1455.
20. Livengood, C. D., Doctor, R. D., Molburg, J. C., Thimmapuram, P., Berry, G. F., The Potential for Control of Carbon Dioxide Emissions from Integrated Gasification/Combined‐Cycle Systems. The 87th Annual Meeting & Exhibition of A & WMA Conference, 1994.
21. Paul, S., Ghoshal, A. K., Mandal, B., Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC), Chemical Engineering Journal, 2008, Vol.144: p. 352‐360.
22. Granite E. J., and O’Brien, T. Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Processing Technology, 2005, Vol. 86(14‐15): p. 1423‐1434.
23. King, A. T., Mulligan, B. J. and Lowe, K. C., Biotechnology, 1989. p. 1037–1042.
24. 謝志鴻。2009。微藻培養與微藻油脂生產之研究。
25. T. M. Hill, J. P. Kennett, D. L. Valentine, Z. Yang, C. M. Reddy, R. K. Nelson, R. J. Behl, C. Climatically driven emissions of hydrocarbons from marine sediments during deglaciation . Robert, and L. Beaufort, 2006. vol 103, no37, 13570‐13574.
26. Converti, A., Alessandro, A., Casazza, E. Y., Ortiz, P. P., Marco Del Borghi., Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: process Intensificantion, 2009. 48(6): p. 1146-1151.
27. Harvey, P.H. and M.D. Pagel, The comparative method in evolutionary biology. Vol.239. 1991: Oxford university press Oxford.
28. 呂錫民。2015。藻類燃料的發展與前景, 201505-401期, 科技產業。
29. Chisti, Y., Biodiesel from microalgae. Biotechnol Adv, 2007. 25(3): p. 294-306.
30. Sobuczuk, T. M., Camacho, F. G., Rubio, F. C., Acién Fernández, F. G., Grima, E. M., Carbon dioxide uptake efficiency by outdoor microalgae cultures in tubular airlift photobioreactors. Biotechnology and bioengineering, 2000.67(4): p. 465-475.
31. Ward, J. K. and B. R. Strain, Elevated CO2 studies: past, present and future. Tree physiology, 1999. 19(4-5): p. 211-220.
32. Ruiz-Martinez, A., Martin Garcia, N., Seco, A., Ferrer, J., Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresource technology, 2012. 126: p. 247-253
33. Becker, E.W., Microalgae: biotechnology and microbiology. Vol. 10. 1994: Cambridge University Press.
34. Rados, S., B. Vaclav, and D. Frantisek, CO2 balance in industrial cultivation of algae. Arch Hydrobiol, 9175. 46(12): p. 297-310.
35. Barbosa, M.J. and R.H. Wijffels, Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnology and bioengineering, 2004. 85(1): p. 78-85.
36. Ono, E. and J.L. Cuello. Selection of optimal microalgae species for CO2 sequestration. in proceedings of the 2nd annual conference on carbon sequestration, Alexandria. 2003. Citeseer.
37. Hoshida, H., Ohira, T., Minematsu, A., Akada, R., Nishizawa, Y., Accumulation of eicosapentaenoic acid in Nannochloropsis sp. In response to elevated CO2 concentration. Journal of Applied Phycology, 2005. 17(1): p. 29-34.
38. Tang, D., Han, W., Li, P., Miao, X., Zhong, J., CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 2011. 102(3): p. 3071-6.
39. Seckbach, J., Gross, H., Nathan, M. B. Growth and photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel journal of botany, 1971. 20: p. 84-90.
40. Hanagata, N., Takeuchi, T., Fukuju, Y., Barnes, D. J., Karube, I. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry, 1992. 31(10): p. 3345-3348.
41. Kodama, M., Ikemoto, H., Miyachi, S. A new species of highly CO2-tolreant fast-growing marine microalga suitable for high-density culture. Journal of marine biotechnology, 1993. 1(1): p. 21-25.
42. Miyairi, S. CO2 assimilation in a thermophilic cyanobacterium. Energy conversion and management, 1995. 36(6): p. 763-766.
43. Nakano, Y., Miyatake, K., Okuno, H., Hamazaki, K., Takenaka, S., Honami, N., Kiyota, M., Aiga, I., Kondo, J. Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. ActaHort, 1996. 440: p. 49-54.
44. Nagase, H., Eguchi, K., Yoshihara, K.-I., Hirata, K., Miyamoto, K., Improvement of microalgal NOx removal in bubble column and airlift reactors. Journal of fermentation and bioengineering, 1998. 86(4): p. 421-423.
45. Yoshihara, K.-I., Nagase, H., Eguchi, K., Hirata, K., Miyamoto, K., Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivation in a long tubular photobioreactor. Journal of fermentation and bioengineering, 1996. 82(4): p. 351-354.
46. Miura, Y., Yamada, W., Hirata, K., Miyamoto, K., Kiyohara., Stimulation of hydrogen production in algal cells grown under high CO2 concentration and low temperature. Applied biochemistry and biotechnology, 1993. 39(1): p. 753-761.
47. Matsumoto, H., Shioji, N., Hamasaki, A., Ikuta, Y., Basic study on optimization of raceway-type algal cultivator. Journal of chemical engineering of Japan, 1996. 29(3): p. 541-543.
48. Richmond, A., Handbook of microalgae culture: biotechnology and applied phycology. 2008: John Wiley & Sons.
49. Turpin, D. H., Effects of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology, 1991. 27(1): p. 14-20.
50. Kim, N.-J., A theoretical consideration on oxygen production rate in microalgal cultures. Biotechnology and Bioprocess Eng. 2001. 6(1): p. 352-358.
51. Endo, T., U. Schreiber, and K. Asada, Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonas reinhardtii. Plant and cell physiology, 1995. 36(7): p. 1253-1258.
52. Renaud, S. and D. Parry, Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. Journal of applied Phycology, 1994. 6(3): p. 347-356.
53. Cifuentes, A. S., González, M. A., Inostroza, I., Aguilera, A., Reappraisal of physiological attributes of nine strains of Dunaliella (Chlorophyceae): growth and pigment content across a salinity gradient. Journal if Phycology, 2001. 37(2): p. 334-344.
54. Kaewkannetra, P., P. Enmak, and T. Chiu, The effect of CO2 and salinity on the cultivation of Scenedsmus obliquus for biodiesel production. Biotechnology and Bioprocess Engineering, 2012. 17(3): p. 591-597.
55. Shan, S.M.U., Radziah, C. C., Ibrahim, A., Latiff, F., Othman, M. F., Abdullah, M. A., Effects of photoperiod, salinity and pH on cell growth and lipid content of Pavlova lutheri. Annals of Microbiology, 2013. 64(1): p. 157-164.
56. Ben - Amotz, A., T.G. Tornabene, and W.H. Thomas, Chemical profile of selected species of microalgae with emphasis on lipids. Journal of Phycology, 1985. 21(1): p. 72-81.
57. Jiang, Y. and F. Chen, Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochemistry, 2000. 35(10): p. 1205-1209.
58. Kim, J., Cho, K.-J., Han, G., Lee, C., Hwang, S., Effect of temperature and pH on the biokinetic properties of thiocyanate biodegradation under autotrophic condition. Water research, 2013. 47(1): p. 251-258.
59. Di Martino Rigano, V., Vona, V., Lobosco, O., Carillo, P., Lunn, J. E., Carfagna, S., Esposito, S., Caiazzo, M., et al., Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella Antarctica and the mesophilic alga Chlorella sorokiniana. Plant, Cell and Environment, 2006. 29(7): p. 1400-1409.
60. Robinson, J. L., Pyzyna, B., Atrasz, R. G., Henderson, C. A., Morrill, K. L., Burd, A. M., DeSoucy, E., Fogleman III, R. E., et al., Growth kinetics of extremely halophilic Archaea (family halobacteriaceae) as revealed by Arrhenius plots. Journal of bacteriology, 2005. 187(3): p. 923-929.
61. Renaud, S.M. Thinh, L.-V., Lambrinidis, G., Parry, D. L., Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 2002. 211(1): p. 195-214.
62. Richmond, A., Handbook of microalgae mass culture. Vol. 528. 1986: CRC press Boca Raton, FL.
63. Zhang, Z. and J.P. Sachs, Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species. Organic Geochemistry, 2007. 38(4): p. 582-608.
64. Hu, Q., Sommerfeld, M., Jarvid, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, Al., Microalgae triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 2008. 54(4): p. 621-639.
65. Miron, A.S., Gómez, A. C., Camacho, F. G., Grima, E. M., Chisti, Y., Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology, 1999. 70(1): p. 249-270.
66. Mouget, J.-L., Dakhama, A., Lavoie, M. C., Noüe, Joël de la., Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved. FEMS Microbiology Ecology, 1995. 18(1): p. 35-43.
67. Tredici, M. R. and Zittelli, G. C., Efficiency of sunlight utilization: Tubular versus flat photobioreactors. Biotechnology and Bioengineering, 1998. 57(2): p. 187-197.
68. Richmond, A. and E. Becker, Technological aspects of mass cultivation- a general outline. CRC handbook of microalgal mass culture, 1986. p. 245-63.
69. Aiba S. Growth kinetics of photosynthetic microorganisms. Microbial reactions: Springer, 1982. p. 85-156.
70. Behrens P. Photobioreactors and fermentors: the light and dark sides of growing algae. Algal culturing techniques. 2005. p. 189-204.
71. Carvalho, A.P., L.A. Meireles, and F.X. Malcata, Microalgal reactors: a review of enclosed system designs and performances. Biotechnology progress, 2006. 22(6): p. 1490-1506.
72. A. Wasanasathian, C.-A. Peng, Artif. Cells, Blood Subs., Immob. Biotech, 2001. 29: p. 47-55.
73. Lowe KC. Perfluorochemical respiratory gas carriers: benefits to cell culture systems. Journal of Fluorine Chemistry, 2002.118: p. 19-26.
74. E. H. Kennard. Kinetic theory of gases. McGraw-Hill, New York, 1938. p. 149.
75. Geoffrey Mohan. Carbon dioxide in atmosphere did not break 400 ppm at Hawaii site, Los Angeles Times, 2013.
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2017-11-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明