博碩士論文 104827015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.221.187.121
姓名 方雲龍(Yun-Lung Fang)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 雙離子胺基酸吸附劑在血液中重金屬 吸附之應用
(Amino acid-base hydrogel: A heavy metal ion scavenger in blood)
相關論文
★ 可功能化抗沾黏性雙離子自組裝單層膜於生物感測器之應用★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds
★ 新型兩性磷脂類高分子聚合物與其自組裝奈米結構★ 聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用
★ 磺基甜菜鹼基自組裝單分子層的形成、穩定性和抗污染性的比較研究★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)
★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane★ 開發可生物降解的完全磷酸膽鹼水凝膠
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds
★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry★ Disulfide-based cross-linkers for functional polymeric networks
★ 建立雙離子高分子修飾蛋白質技術與分析★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER
★ 以鄰苯二酚與金屬離子螯合方式形成抗菌及抗污之表面塗層研究★ 兩性離子微珠抗阻塞過濾裝置應用於分離大量循環腫瘤細胞
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 重金屬污染是當今最重要的環境問題之一,含銅廢水常由農業中農藥噴灑、粉刷顏料和皮革工業生產的過程中未經處理直接排放到自然環境,經由食物鏈的堆積時將嚴重影響人體的健康,例如阿爾茨海默病、帕金森病或威爾森氏症。藥物螯合被廣泛用於治療銅超載疾病,但據報導其具有破壞免疫系統、腎臟,並可能使已有神經問題的患者的神經症狀惡化…副作用等。
在先前的研究中以證明雙離子氨基酸的聚合物具有優異的生物相容性和防污性能且能夠藉由其官能基專一的螯合銅離子。在這裡,我們開發了一種基於氨基酸的水凝膠吸附劑,並將其填充至管柱方便快速過濾患者血液中的銅離子。我們在不同條件下進行了胺基酸吸附劑對Cu2 +的螯合能力,並藉由溶血試驗和血小板粘附實驗證實了血液相容性,最後通過動物實驗驗證了其去除溶液中的銅離子之效果。我們期望此氨基酸吸附劑在將來能作為Cu2+ 清除劑及在血液透析上的應用。
摘要(英) Heavy metal pollution has been one of the most important environmental problems today. Copper-containing wastewater is extensively released from different industries. The release of metal ions into food chains results in serious healthcare issues such as overaccumulation in human body leading to Alzheimer′s, Parkinson′s and Wilson diseases. Pharmaceutical chelating agents are widely used in the treatment of copper-induced toxicity. However, it had been reported that the side effects of the treatment damage the immune system, kidneys and neurological symptoms of patients with pre-existing neurological problems.
Zwitterionic amino acid-based polymers were developed for excellent biocompatibility and antifouling properties. In previous studies, amino acid group enables specifically catching copper ions from solution by formation of a chelating structure. Here, we developed an amino acid-based hydrogel adsorbent in order to rapid and effective removal of Cu2+ ions from blood by filtration in a gel-packed column. We performed the chelating ability of gel adsorbent to Cu2 + under different conditions and confirmed the hemocompatibility by hemolysis test and platelet adhesion test. Finally, we verified the capability of gel column to remove copper ions from the solution in an animal experiment. As result, it owns good adsorption and regeneration ability, and good hemocompatibility and it also can sorption copper in blood. We expect that the amino acid-based hydrogels hold a great potential as a Cu2+-removal hemodialysis system in the future.
關鍵字(中) ★ 氨基酸
★ 水凝膠
★ 銅吸附劑
★ 兩性離子材料
★ 血液相容性
★ 透析
關鍵字(英) ★ amino acid
★ hydrogel
★ copper adsorbent
★ zwitterionic material
★ dialysis
★ hemocompatibility
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章、研究緣起 1
第二章 文獻回顧 2
2-1 金屬銅 2
2-1-1 銅在生物中的腳色 3
2-1-2 銅在體內的代謝 3
2-1-3 銅缺乏的疾病 5
2-1-4銅過量有關的疾病 6
2-2 重金屬的去除 12
2-2-1 離子交換法 12
2-2-2 膜過濾 12
2-2-3 化學沉澱 13
2-2-4 活性碳吸附劑 13
2-2-5水凝膠吸附劑 14
2-3 胺基酸啟發雙離子材料 15
第三章 研究方法 18
3-1 研究內容及流程 18
3-2 實驗藥品 20
3-3 實驗方法 22
3-3-1單體合成及水凝膠合成測試 22
3-3-2 重金屬吸附實驗 26
3-3-4 動物實驗 33
第四章 實驗結果與討論 34
4-1 單體合成及水凝膠測試 34
4-1-1 丙烯酰基賴氨酸 NMR 頻譜分析 34
4-1-2 單體對酸鹼之影響 34
4-1-3 膨潤率測試 36
4-2重金屬吸附實驗 37
4-2-1 重金屬吸附機制探討 37
4-2-2 重金屬吸附對吸附劑機械性質之影響 38
4-2-3 時間對吸附之影響 39
4-2-4 pH 值對吸附之影響 40
4-2-5 重金屬吸附曲線 41
4-2-6 吸附劑吸附時間改善 44
4-2-7 吸附劑之再利用性 45
4-3 相容性測試 47
4-3-1細胞毒性測試 47
4-3-2 蛋白質吸附測試 48
4-3-3 溶血測試 49
4-3-4 血小板吸附測試 50
4-4 動物實驗測試 52
第五章、結論 54
第六章、參考文獻 55

參考文獻 [1] S. Veli, B. Alyuz, Adsorption of copper and zinc from aqueous solutions by using natural clay, J Hazard Mater 149(1) (2007) 226-33.
[2] N. Wang, Y. Han, Y. Liu, T. Bai, H. Gao, P. Zhang, W. Wang, W. Liu, High-strength hydrogel as a reusable adsorbent of copper ions, J Hazard Mater 213-214 (2012) 258-64.
[3] M. Monier, D.M. Ayad, A.A. Sarhan, Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers, J Hazard Mater 176(1-3) (2010) 348-55.
[4] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J Environ Manage 92(3) (2011) 407-18.
[5] S. Zhu, N. Yang, D. Zhang, Poly(N,N-dimethylaminoethyl methacrylate) modification of activated carbon for copper ions removal, Materials Chemistry and Physics 113(2-3) (2009) 784-789.
[6] E.S. Dragan, M.V. Dinu, D. Timpu, Preparation and characterization of novel composites based on chitosan and clinoptilolite with enhanced adsorption properties for Cu2+, Bioresour Technol 101(2) (2010) 812-7.
[7] W. Shen, S. Chen, S. Shi, X. Li, X. Zhang, W. Hu, H. Wang, Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose, Carbohydrate Polymers 75(1) (2009) 110-114.
[8] P. Kampalanonwat, P. Supaphol, Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal, ACS Appl Mater Interfaces 2(12) (2010) 3619-27.
[9] H. Kaşgöz, S. Özgümüş, M. Orbay, Modified polyacrylamide hydrogels and their application in removal of heavy metal ions, Polymer 44(6) (2003) 1785-1793.
[10] T. Trakulsujaritchok, N. Noiphom, N. Tangtreamjitmun, R. Saeeng, Adsorptive features of poly(glycidyl methacrylate-co-hydroxyethyl methacrylate): effect of porogen formulation on heavy metal ion adsorption, Journal of Materials Science 46(16) (2011) 5350-5362.
[11] P.G. Georgopoulos, A. Roy, M.J. Yonone-Lioy, R.E. Opiekun, P.J. Lioy, Environmental copper: its dynamics and human exposure issues, J Toxicol Environ Health B Crit Rev 4(4) (2001) 341-94.
[12] X.-s. Wang, Y. Qin, Equilibrium sorption isotherms for of Cu2+ on rice bran, Process Biochemistry 40(2) (2005) 677-680.
[13] H.K. Elena Gaggelli, Daniela Valensin, and Gianni Valensin, Copper Homeostasis and Neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic Lateral Sclerosis), Chem. Rev. 106(1995−2044) (2006).
[14] R. Squitti, R. Polimanti, Copper phenotype in Alzheimer′s disease: dissecting the pathway, Am J Neurodegener Dis 2(2) (2013) 46-56.
[15] J. Tennant, M. Stansfield, S. Yamaji, S.K. Srai, P. Sharp, Effects of copper on the expression of metal transporters in human intestinal Caco-2 cells, FEBS Lett 527(1-3) (2002) 239-44.
[16] M.D. Knutson, Steap proteins: implications for iron and copper metabolism, Nutr Rev 65(7) (2007) 335-40.
[17] M. Greenough, L. Pase, I. Voskoboinik, M.J. Petris, A.W. O′Brien, J. Camakaris, Signals regulating trafficking of Menkes (MNK; ATP7A) copper-translocating P-type ATPase in polarized MDCK cells, Am J Physiol Cell Physiol 287(5) (2004) C1463-71.
[18] D.L. de Romana, M. Olivares, R. Uauy, M. Araya, Risks and benefits of copper in light of new insights of copper homeostasis, J Trace Elem Med Biol 25(1) (2011) 3-13.
[19] M. Dijkstra, R.J. Vonk, F. Kuipers, How does copper get into bile? New insights into the mechanism(s) of hepatobiliary copper transport, J Hepatol 24 Suppl 1 (1996) 109-20.
[20] M. Araya, B. Koletzko, R. Uauy, Copper deficiency and excess in infancy: developing a research agenda, J Pediatr Gastroenterol Nutr 37(4) (2003) 422-9.
[21] P. de Bie, P. Muller, C. Wijmenga, L.W. Klomp, Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes, J Med Genet 44(11) (2007) 673-88.
[22] E. Nastoulis, M.V. Karakasi, C.M. Couvaris, S. Kapetanakis, A. Fiska, P. Pavlidis, Greenish-blue gastric content: Literature review and case report on acute copper sulphate poisoning, Forensic Sci Rev 29(1) (2017) 77-91.
[23] U. Förstner, Wittmann, G. T. W., Metal Pollution in the Aquatic Environment, Springer Verlag, New York (1981).
[24] 陳偉周、林奐成, 「這裡是麥寮第二」桃園40公里海岸體無完膚, 蘋果日報 (2014).
[25] C.S. Gamakaranage, C. Rodrigo, S. Weerasinghe, A. Gnanathasan, V. Puvanaraj, H. Fernando, Complications and management of acute copper sulphate poisoning; a case discussion, J Occup Med Toxicol 6(1) (2011) 34.
[26] N. Franchitto, P. Gandia-Mailly, B. Georges, A. Galinier, N. Telmon, J.L. Ducasse, D. Rouge, Acute copper sulphate poisoning: a case report and literature review, Resuscitation 78(1) (2008) 92-6.
[27] A. Ala, A.P. Walker, K. Ashkan, J.S. Dooley, M.L. Schilsky, Wilson′s disease, Lancet 369(9559) (2007) 397-408.
[28] Wikipedia, Kayser–Fleischer ring, https://en.wikipedia.org/wiki/Kayser%E2%80%93Fleischer_ring.
[29] E.A. Roberts, M.L. Schilsky, D. American Association for Study of Liver, Diagnosis and treatment of Wilson disease: an update, Hepatology 47(6) (2008) 2089-111.
[30] R.H. Wiesner, R.B. Freeman, D.C. Mulligan, Liver transplantation for hepatocellular cancer: The impact of the MELD allocation policy, Gastroenterology 127(5) (2004) S261-S267.
[31] J.D. Korman, I. Volenberg, J. Balko, J. Webster, F.V. Schiodt, R.H. Squires, Jr., R.J. Fontana, W.M. Lee, M.L. Schilsky, Pediatric, G. Adult Acute Liver Failure Study, Screening for Wilson disease in acute liver failure: a comparison of currently available diagnostic tests, Hepatology 48(4) (2008) 1167-74.
[32] B. Kreymann, M. Seige, U. Schweigart, K.F. Kopp, M. Classen, Albumin dialysis: effective removal of copper in a patient with fulminant Wilson disease and successful bridging to liver transplantation: a new possibility for the elimination of protein-bound toxins, J Hepatol 31(6) (1999) 1080-5.
[33] M. Bilal, J.A. Shah, T. Ashfaq, S.M. Gardazi, A.A. Tahir, A. Pervez, H. Haroon, Q. Mahmood, Waste biomass adsorbents for copper removal from industrial wastewater--a review, J Hazard Mater 263 Pt 2 (2013) 322-33.
[34] A.L. Ahmad, B.S. Ooi, A study on acid reclamation and copper recovery using low pressure nanofiltration membrane, Chemical Engineering Journal 156(2) (2010) 257-263.
[35] Z.V. Murthy, L.B. Chaudhari, Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters, J Hazard Mater 160(1) (2008) 70-7.
[36] Y. Luo, M.S. Shoichet, A photolabile hydrogel for guided three-dimensional cell growth and migration, Nat Mater 3(4) (2004) 249-53.
[37] S.M. Ibrahim, K.M. El Salmawi, A.H. Zahran, Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation, Journal of Applied Polymer Science 104(3) (2007) 2003-2008.
[38] A. Sannino, C. Demitri, M. Madaghiele, Biodegradable Cellulose-based Hydrogels: Design and Applications, Materials 2(2) (2009) 353-373.
[39] W.B. Wang, D.J. Huang, Y.R. Kang, A.Q. Wang, One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion, Colloids Surf B Biointerfaces 106 (2013) 51-9.
[40] G. Zhou, C. Liu, L. Chu, Y. Tang, S. Luo, Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process, Bioresour Technol 219 (2016) 451-457.
[41] Q. Liu, A. Singh, L. Liu, Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material, Biomacromolecules 14(1) (2013) 226-31.
[42] B. Jiang, J.C. Larson, P.W. Drapala, V.H. Perez-Luna, J.J. Kang-Mieler, E.M. Brey, Investigation of lysine acrylate containing poly(N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds, J Biomed Mater Res B Appl Biomater 100(3) (2012) 668-76.
[43] W. Xu, J. Qian, Y. Zhang, A. Suo, N. Cui, J. Wang, Y. Yao, H. Wang, A double-network poly(Nvarepsilon-acryloyl L-lysine)/hyaluronic acid hydrogel as a mimic of the breast tumor microenvironment, Acta Biomater 33 (2016) 131-41.
[44] C.J. Huang, L.C. Wang, C.Y. Liu, A.S. Chiang, Y.C. Chang, Natural zwitterionic organosulfurs as surface ligands for antifouling and responsive properties, Biointerphases 9(2) (2014) 029010.
[45] Q. Liu, W. Li, A. Singh, G. Cheng, L. Liu, Two amino acid-based superlow fouling polymers: poly(lysine methacrylamide) and poly(ornithine methacrylamide), Acta Biomater 10(7) (2014) 2956-64.
[46] Y. Xu, X. Yang, S. Zhu, Y. Dou, Selectively fluorescent sensing of Cu2+ based on lysine-functionalized gold nanoclusters, Colloids and Surfaces A: Physicochemical and Engineering Aspects 450 (2014) 115-120.
[47] S. Nagaoka, A. Shundo, T. Satoh, K. Nagira, R. Kishi, K. Ueno, K. Iio, H. Ihara, Method for a Convenient and Efficient Synthesis of Amino Acid Acrylic Monomers with Zwitterionic Structure, Synthetic Communications 35(19) (2006) 2529-2534.
[48] K.-T. Huang, Y.-L. Fang, P.-S. Hsieh, C.-C. Li, N.-T. Dai, C.-J. Huang, Zwitterionic nanocomposite hydrogels as effective wound dressings, Journal of Materials Chemistry B 4(23) (2016) 4206-4215.
[49] C. Cheng, S. Nie, S. Li, H. Peng, H. Yang, L. Ma, S. Sun, C. Zhao, Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors, J. Mater. Chem. B 1(3) (2013) 265-275.
[50] R. Musacco-Sebio, N. Ferrarotti, C. Saporito-Magrina, J. Semprine, J. Fuda, H. Torti, A. Boveris, M.G. Repetto, Oxidative damage to rat brain in iron and copper overloads, Metallomics 6(8) (2014) 1410-6.
[51] M. Karbarz, K. Pulka, A. Misicka, Z. Stojek, pH and temperature-sensitive N-isopropylacrylamide ampholytic networks incorporating L-lysine, Langmuir 22(18) (2006) 7843-7.
[52] L. Zhou, X. Chen, W. Dai, Z. Shao, X-ray photoelectron spectroscopic and Raman analysis of silk fibroin-Cu(II) films, Biopolymers 82(2) (2006) 144-51.

指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2018-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明