博碩士論文 104827605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:3.146.152.99
姓名 阮宏南(Nguyen Hoang Nam)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 新型兩性磷脂類高分子聚合物與其自組裝奈米結構
(Self-Assembled Nanostructures of Novel Amphiphilic CP Polymer)
相關論文
★ 可功能化抗沾黏性雙離子自組裝單層膜於生物感測器之應用★ 雙離子胺基酸吸附劑在血液中重金屬 吸附之應用
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用
★ 磺基甜菜鹼基自組裝單分子層的形成、穩定性和抗污染性的比較研究★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)
★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane★ 開發可生物降解的完全磷酸膽鹼水凝膠
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds
★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry★ Disulfide-based cross-linkers for functional polymeric networks
★ 建立雙離子高分子修飾蛋白質技術與分析★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER
★ 以鄰苯二酚與金屬離子螯合方式形成抗菌及抗污之表面塗層研究★ 兩性離子微珠抗阻塞過濾裝置應用於分離大量循環腫瘤細胞
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 囊泡聚合物由於其在生物醫學與工業上的廣泛應用具有高穩定性,良好的生物相容性,以及作為不溶水藥物之奈米載體的能力,已然成為一個具吸引力的研究領域。因此,新型的自組裝奈米結構-可逆之膽鹼磷酸鹽(CP)的兩親兩性離子聚合物將在本研究中被陳述。首先,2-ethyl n-octyl phosphate (MOP)的合成是根據我們之前的研究,並且透過可逆加成-斷裂鏈轉移聚合反應聚合形成高分子。根據溶劑、添加劑以及製備方法的不同,聚合物可以自組裝成各種聚合物囊泡。再來運用幾種技術來確認pMOP囊泡的結構,包括動態光散射(DLS),原子力顯微鏡(AFM)和低溫電子顯微鏡(Cryo-TEM)。接下來運用螢光光譜得到單體和聚合物的臨界微胞濃度(CMC),並與現有的表面活性劑相比,顯示出極低的CMC。之後透過Cryo-TEM圖像證實了pMOP囊泡的可控尺寸和形態,其中膜厚度幾乎與磷脂雙分子層相同。這種兩性離子聚合物具有模仿生物膜的巨大潛力以及與許多生物分子結合的能力,當在對奈米結構的製造具精細控制成功時,將在生物醫學領域開拓廣泛的應用。
摘要(英) Polymer vesicles have been an attractive research field due to their wide range of application in both biomedical and industrial with the good properties such as high stability, good biocompatibility, the ability as a nanocarrier of the water-insoluble drug, etc. Herein, the self-assembly nanostructure of a new reverse choline phosphate (CP) amphiphilic zwitterionic polymer is reported. 2-ethyl n-octyl phosphate (MOP) was synthesis based on our previous work and polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymer can self-assembly into various kinds of polymer vesicles depending on the solvent, additives and the preparation method. Several techniques were used to confirm the structure of pMOP vesicles including Dynamic light scattering (DLS), Atomic Force Microscopy (AFM) and Cryo-electron microscopy (Cryo-TEM). The critical micelle concentration (CMC) of the monomer and polymer were obtained by using fluorescence spectroscopy, which showed an extremely low CMC compared to the available surfactants. The controllable size and morphologies of pMOP vesicles were demonstrated by Cryo-TEM images, in which the membrane thickness is nearly equal to the phospholipid bilayer. With a very high potential of mimicking the biological membranes and the ability to incorporate with many biomolecules, when achieving finely controlling the nanostructure fabrication, this zwitterionic polymer will open a wide range of applications in biomedical field.
關鍵字(中) ★ 奈米結構
★ 兩性離子聚合物
★ 自組裝
★ 囊泡
關鍵字(英) ★ nanostructure
★ zwitterionic polymer
★ self-assembly
★ vesicle
論文目次 TABLE OF CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLES XI
LIST OF ABBREVIATIONS XII
ABSTRACT XIII
CHINESE ABSTRACT XIV
ACKNOWLEDGMENT XV
CHAPTER 1: LITERATURE REVIEW 16
1.1. Introduction 16
1.2. Cell membrane structure 17
1.3. Polyzwitterions 19
1.3.1. Poly(sulfobetaine) 20
1.3.2. Poly(carboxybetaine) 20
1.3.3. Poly(phosphorylcholine) 20
1.3.3.1. Synthesis of PC-based materials 21
1.3.3.2. Inverted Choline Phosphate (CP) 22
1.4. Radical Polymerization 24
1.4.1. Mechanism of RAFT 26
1.4.2. Structure of RAFT agents 28
1.4.3. Classes of chain-transfer agents (CTA) 29
1.4.4. Compatibility of RAFT agents with different monomers 30
1.4.5. Choice of initiator 30
1.5. Polymer vesicles preparation method 31
1.5.1. Solvent-switch method 33
1.5.2. Solvent-free methods 33
1.5.2.1. Rehydration method 34
1.5.2.2. pH tuning in pure water 36
1.5.2.3. Polyion complex vesicles (PICsomes) 36
1.5.3. Polymerization-induced self-assembly: PISA 37
1.5.4. Centrifugation-induced self-assembly 39
1.5.5. Microfluid method 40
1.5.6. Nanoprinting method 41
CHAPTER 3: MATERIALS AND METHODS 45
3.1. Materials 45
3.2. Methods 45
3.2.1. Preparation of OOP 45
3.2.2. Preparation of MOP 46
3.2.4. CMC determination 46
3.2.5. Preparation of different nanostructures 47
3.3. Characterization 48
CHAPTER 4: RESULTS AND DISCUSSION 50
4.1. Synthesis of pMOP 50
4.2. Characterization of pMOP 54
4.3 CMC determination of MOP and pMOP 55
4.4. Polymer vesicle size study by DLS 58
4.4.1. Comparison of pMOP with different molecular weight 58
4.4.2. pMOP in the solution with and without FBS 59
4.4.3. pMOP incorporating with Cholesterol 61
4.5.1. Cryo-TEM and AFM images of pMOP – Curcumin nanostructure 62
4.5.2. Nanostructure of pMOP in other conditions 66
4.5.2.1. pMOP in water: Hexane (99:1) 66
4.5.2.2. pMOP – Curcumin in THF 67
4.5.2.3. pMOP incorporate with Cholesterol in water 68
CHAPTER 5: CONCLUSIONS AND FUTURE WORKS 70
REFERENCES 71

參考文獻 1. Yu, K. & A. Eisenberg, Multiple morphologies in aqueous solutions of aggregates of polystyrene-block-poly (ethylene oxide) diblock copolymers. Macromolecules, 1996. 29(19): p. 6359-6361.
2. Shen, H. & A. Eisenberg, Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O. Macromolecules, 2000. 33(7): p. 2561-2572.
3. Discher, B.M., Y.-Y. Won, D.S. Ege, J.C. Lee, F.S. Bates, D.E. Discher, & D.A. Hammer, Polymersomes: tough vesicles made from diblock copolymers. Science, 1999. 284(5417): p. 1143-1146.
4. Ding, J. & G. Liu, Polyisoprene-block-poly (2-cinnamoylethyl methacrylate) vesicles and their aggregates. Macromolecules, 1997. 30(3): p. 655-657.
5. Kulkarni, C.V., Lipid crystallization: from self-assembly to hierarchical and biological ordering. Nanoscale, 2012. 4(19): p. 5779-5791.
6. Du, J., L. Fan, & Q. Liu, pH-sensitive block copolymer vesicles with variable trigger points for drug delivery. Macromolecules, 2012. 45(20): p. 8275-8283.
7. Marguet, M.t., O. Sandre, & S.b. Lecommandoux, Polymersomes in “gelly” polymersomes: toward structural cell mimicry. Langmuir, 2011. 28(4): p. 2035-2043.
8. Ishihara, K., Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. Science and Technology of Advanced Materials, 2000. 1(3): p. 131-138.
9. Tanner, P., O. Onaca, V. Balasubramanian, W. Meier, & C.G. Palivan, Enzymatic cascade reactions inside polymeric nanocontainers: a means to combat oxidative stress. Chemistry-A European Journal, 2011. 17(16): p. 4552-4560.
10. Zhu, Y., L. Fan, B. Yang, & J. Du, Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS nano, 2014. 8(5): p. 5022-5031.
11. Holowka, E.P., D.J. Pochan, & T.J. Deming, Charged polypeptide vesicles with controllable diameter. Journal of the American Chemical Society, 2005. 127(35): p. 12423-12428.
12. Bonduelle, C., J. Huang, E. Ibarboure, A. Heise, & S. Lecommandoux, Synthesis and self-assembly of “tree-like” amphiphilic glycopolypeptides. Chemical communications, 2012. 48(67): p. 8353-8355.
13. Tan, Y., K. Xu, Y. Li, S. Sun, & P. Wang, A robust route to fabricate starch esters vesicles. Chemical Communications, 2010. 46(25): p. 4523-4525.
14. Sanson, C., O. Diou, J. Thevenot, E. Ibarboure, A. Soum, A. Brûlet, S. Miraux, E. Thiaudière, S. Tan, & A. Brisson, Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS nano, 2011. 5(2): p. 1122-1140.
15. Ramireddy, R.R., P. Prasad, A. Finne, & S. Thayumanavan, Zwitterionic amphiphilic homopolymer assemblies. Polymer chemistry, 2015. 6(33): p. 6083-6087.
16. Antonietti, M. & S. Förster, Vesicles and liposomes: a self‐assembly principle beyond lipids. Advanced Materials, 2003. 15(16): p. 1323-1333.
17. Christian, D.A., A. Tian, W.G. Ellenbroek, I. Levental, K. Rajagopal, P.A. Janmey, A.J. Liu, T. Baumgart, & D.E. Discher, Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding. Nature materials, 2009. 8(10): p. 843-849.
18. Wong, K.E., M.C. Mora, M. Skinner, S. McRae Page, G.M. Crisi, R.B. Arenas, S.S. Schneider, & T. Emrick, Evaluation of PolyMPC-Dox Prodrugs in a Human Ovarian Tumor Model. Mol Pharm, 2016. 13(5): p. 1679-87.
19. Giacomelli, C., L. Le Men, R. Borsali, J. Lai-Kee-Him, A. Brisson, S.P. Armes, & A.L. Lewis, Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Biomacromolecules, 2006. 7(3): p. 817-828.
20. Yu, B., A.B. Lowe, & K. Ishihara, RAFT synthesis and stimulus-induced self-assembly in water of copolymers based on the biocompatible monomer 2-(methacryloyloxy) ethyl phosphorylcholine. Biomacromolecules, 2009. 10(4): p. 950-958.
21. Xu, J.P., J. Ji, W.D. Chen, & J.C. Shen, Novel biomimetic surfactant: synthesis and micellar characteristics. Macromol Biosci, 2005. 5(2): p. 164-71.
22. Zhao, X., Z. Zhang, F. Pan, T.A. Waigh, & J.R. Lu, Plasmid DNA complexation with phosphorylcholine diblock copolymers and its effect on cell transfection. Langmuir, 2008. 24(13): p. 6881-6888.
23. Yusa, S.-i., K. Fukuda, T. Yamamoto, K. Ishihara, & Y. Morishima, Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules, 2005. 6(2): p. 663-670.
24. Ishihara, K., Phospholipid polymers. Encyclopedia of Polymer Science and Technology. 2012, New York (NY): John Wiley & Sons, Inc.
25. Xu, J.P., J. Ji, W.D. Chen, & J.C. Shen, Novel biomimetic surfactant: synthesis and micellar characteristics. Macromolecular bioscience, 2005. 5(2): p. 164-171.
26. Cai, M.T., J. Cao, Z.Z. Wu, F.R. Cheng, Y.W. Chen, & X.L. Luo, In vitro and in vivo anti-tumor efficiency comparison of phosphorylcholine micelles with PEG micelles. Colloids and Surfaces B-Biointerfaces, 2017. 157: p. 268-279.
27. Singer, S. & G.L. Nicolson, The fluid mosaic model of the structure of cell membranes. Membranes and Viruses in Immunopathology; Day, SB, Good, RA, Eds, 1972: p. 7-47.
28. Zwaal, R., P. Comfurius, & L. Van Deenen, Membrane asymmetry and blood coagulation. 1977.
29. Daemen, F., H. HART, C. van der Drift, & L. VAN DEENEN, Activity of Synthetic Phospholipid in Blood Coagulation. Thrombosis et diathesis haemorrhagica, 1965. 13: p. 194.
30. Hess, M., R.G. Jones, J. Kahovec, T. Kitayama, P. Kratochvíl, P. Kubisa, W. Mormann, R. Stepto, D. Tabak, & J. Vohlídal, Terminology of polymers containing ionizable or ionic groups and of polymers containing ions (IUPAC Recommendations 2006). Pure and Applied Chemistry, 2006. 78(11): p. 2067-2074.
31. Laschewsky, A., Structures and synthesis of zwitterionic polymers. Polymers, 2014. 6(5): p. 1544-1601.
32. Tarannum, N. & M. Singh, Advances in synthesis and applications of sulfo and carbo analogues of polybetaines: a review. Reviews in Advanced Sciences and Engineering, 2013. 2(2): p. 90-111.
33. Alfrey Jr, T., H. Morawetz, E.B. Fitzgerald, & R.M. Fuoss, Synthetic electrical analog of proteins1. Journal of the American Chemical Society, 1950. 72(4): p. 1864-1864.
34. Zhang, Z., T. Chao, & S. Jiang, Physical, chemical, and chemical-physical double network of zwitterionic hydrogels. The Journal of Physical Chemistry B, 2008. 112(17): p. 5327-5332.
35. Carr, L., G. Cheng, H. Xue, & S. Jiang, Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels. Langmuir, 2010. 26(18): p. 14793-14798.
36. Jiang, S. & Z. Cao, Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 2010. 22(9): p. 920-932.
37. Zwaal, R. & H.C. Hemker, Blood cell membranes and haemostasis. Pathophysiology of Haemostasis and Thrombosis, 1982. 11(1): p. 12-39.
38. Ishihara, K., K. Fukumoto, Y. Iwasaki, & N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials, 1999. 20(17): p. 1553-1559.
39. Kojima, M., K. Ishihara, A. Watanabe, & N. Nakabayashi, Interaction between phospholipids and biocompatible polymers containing a phosphorylcholine moiety. Biomaterials, 1991. 12(2): p. 121-124.
40. Wu, L., Z. Guo, S. Meng, W. Zhong, Q. Du, & L.L. Chou, Synthesis of a zwitterionic silane and its application in the surface modification of silicon-based material surfaces for improved hemocompatibility. ACS applied materials & interfaces, 2010. 2(10): p. 2781-2788.
41. Ishihara, K., T. Ueda, & N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J, 1990. 22(5): p. 355-360.
42. Kadoma, Y., N. Nakabayashi, E. Masuhara, & J. Yamauchi, Synthesis and hemolysis test of polymer containing phosphorylcholine groups. Kobunshi Ronbunshu, 1978. 35(7): p. 423-427.
43. Iwasaki, Y., M. Ijuin, A. Mikami, N. Nakabayashi, & K. Ishihara, Behavior of blood cells in contact with water‐soluble phospholipid polymer. Journal of biomedical materials research, 1999. 46(3): p. 360-367.
44. Nakaya, T., H. Toyoda, & M. Imoto, Polymeric Phospholipid Analogues XIII. Synthesis and Properties of Vinyl Polymers Containing Phosphatidyl Choline Groups. Polymer journal, 1986. 18(11): p. 881-885.
45. Lewis, A.L. & A.W. Lloyd, Biomedical Applications of Biomimetic Polymers: The Phosphorylcholine‐Containing Polymers. Biomimetic, Bioresponsive, and Bioactive Materials: An Introduction to Integrating Materials with Tissues, 2012: p. 95-140.
46. Hu, G., S.S. Parelkar, & T. Emrick, A facile approach to hydrophilic, reverse zwitterionic, choline phosphate polymers. Polymer Chemistry, 2015. 6(4): p. 525-530.
47. Yu, X., X. Yang, S. Horte, J.N. Kizhakkedathu, & D.E. Brooks, ATRP synthesis of poly(2-(methacryloyloxy)ethyl choline phosphate): a multivalent universal biomembrane adhesive. Chem Commun (Camb), 2013. 49(61): p. 6831-3.
48. Hu, G. & T. Emrick, Functional Choline Phosphate Polymers. J Am Chem Soc, 2016. 138(6): p. 1828-31.
49. Mishra, V. & R. Kumar, Living radical polymerization: A review. Journal of Scientific Research, 2012. 56: p. 141-176.
50. Lowe, A.B. & C.L. McCormick, Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science, 2007. 32(3): p. 283-351.
51. Matyjaszewski, K., Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules, 2012. 45(10): p. 4015-4039.
52. Tsarevsky, N.V. & K. Matyjaszewski, "Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev, 2007. 107(6): p. 2270-99.
53. Moad, G., Y.K. Chong, A. Postma, E. Rizzardo, & S.H. Thang, Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer, 2005. 46(19): p. 8458-8468.
54. Moad, G., E. Rizzardo, & S.H. Thang, Radical addition–fragmentation chemistry in polymer synthesis. Polymer, 2008. 49(5): p. 1079-1131.
55. Puts, R.D. & D.Y. Sogah, Control of living free-radical polymerization by a new chiral nitroxide and implications for the polymerization mechanism. Macromolecules, 1996. 29(9): p. 3323-3325.
56. Le, T., G. Moad, E. Rizzardo, & S. Thang, Inventors; polymerization with living characteristics. WO, 1998. 98: p. 01478.
57. Mayadunne, R.T., E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, & S.H. Thang, Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps. Macromolecules, 2000. 33(2): p. 243-245.
58. Keddie, D.J., C. Guerrero-Sanchez, G. Moad, E. Rizzardo, & S.H. Thang, Switchable reversible addition–fragmentation chain transfer (RAFT) polymerization in aqueous solution, N, N-dimethylacrylamide. Macromolecules, 2011. 44(17): p. 6738-6745.
59. Moad, G., E. Rizzardo, & S.H. Thang, Living radical polymerization by the RAFT process. Australian journal of chemistry, 2005. 58(6): p. 379-410.
60. Moad, G., E. Rizzardo, & S.H. Thang, Living radical polymerization by the RAFT process–a third update. Australian Journal of Chemistry, 2012. 65(8): p. 985-1076.
61. Moad, G., E. Rizzardo, & S.H. Thang, Toward living radical polymerization. Accounts of chemical research, 2008. 41(9): p. 1133-1142.
62. Chiefari, J., Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P. Le, R.T. Mayadunne, G.F. Meijs, C.L. Moad, & G. Moad, Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules, 1998. 31(16): p. 5559-5562.
63. Barner‐Kowollik, C., J.P. Blinco, M. Destarac, K.J. Thurecht, & S. Perrier, Reversible addition fragmentation chain transfer (RAFT) polymerization: mechanism, process and applications. Encyclopedia of radicals in chemistry, biology and materials, 2012.
64. Veloso, A., W. García, A. Agirre, N. Ballard, F. Ruipérez, C. José, & J.M. Asua, Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS. Polymer Chemistry, 2015. 6(30): p. 5437-5450.
65. Liu, Q., S. Chen, J. Chen, & J. Du, An asymmetrical polymer vesicle strategy for significantly improving T 1 MRI sensitivity and cancer-targeted drug delivery. Macromolecules, 2015. 48(3): p. 739-749.
66. Popescu, M.-T., M. Korogiannaki, K. Marikou, & C. Tsitsilianis, CBABC terpolymer-based nanostructured vesicles with tunable membrane permeability as potential hydrophilic drug nanocarriers. Polymer, 2014. 55(13): p. 2943-2951.
67. Themistou, E., G. Battaglia, & S.P. Armes, Facile synthesis of thiol-functionalized amphiphilic polylactide–methacrylic diblock copolymers. Polymer Chemistry, 2014. 5(4): p. 1405-1417.
68. Du, J. & R.K. O′Reilly, Advances and challenges in smart and functional polymer vesicles. Soft Matter, 2009. 5(19): p. 3544-3561.
69. Lee, J.C.M., H. Bermudez, B.M. Discher, M.A. Sheehan, Y.Y. Won, F.S. Bates, & D.E. Discher, Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnology and bioengineering, 2001. 73(2): p. 135-145.
70. Du, J. & S.P. Armes, Preparation of biocompatible zwitterionic block copolymer vesicles by direct dissolution in water and subsequent silicification within their membranes. Langmuir, 2009. 25(16): p. 9564-9570.
71. Nikova, A.T., V.D. Gordon, G. Cristobal, M.R. Talingting, D.C. Bell, C. Evans, M. Joanicot, J.A. Zasadzinski, & D.A. Weitz, Swollen vesicles and multiple emulsions from block copolymers. Macromolecules, 2004. 37(6): p. 2215-2218.
72. Du, J., Y. Tang, A.L. Lewis, & S.P. Armes, pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. Journal of the American Chemical Society, 2005. 127(51): p. 17982-17983.
73. Takahashi, R., T. Sato, K. Terao, & S.-i. Yusa, Reversible vesicle–spherical micelle transition in a polyion complex micellar system induced by changing the mixing ratio of copolymer components. Macromolecules, 2016. 49(8): p. 3091-3099.
74. Li, Y., B.S. Lokitz, & C.L. McCormick, Thermally responsive vesicles and their structural “locking” through polyelectrolyte complex formation. Angewandte Chemie International Edition, 2006. 45(35): p. 5792-5795.
75. Blanazs, A., J. Madsen, G. Battaglia, A.J. Ryan, & S.P. Armes, Mechanistic insights for block copolymer morphologies: how do worms form vesicles? Journal of the American Chemical Society, 2011. 133(41): p. 16581-16587.
76. Wan, W.-M., C.-Y. Hong, & C.-Y. Pan, One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition. Chemical Communications, 2009(39): p. 5883-5885.
77. Charleux, B., G. Delaittre, J. Rieger, & F. D’Agosto, Polymerization-induced self-assembly: from soluble macromolecules to block copolymer nano-objects in one step. Macromolecules, 2012. 45(17): p. 6753-6765.
78. Warren, N.J. & S.P. Armes, Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc, 2014. 136(29): p. 10174-10185.
79. Zhu, Y., B. Yang, S. Chen, & J. Du, Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Progress in Polymer Science, 2017. 64: p. 1-22.
80. Marguet, M., L. Edembe, & S. Lecommandoux, Polymersomes in polymersomes: multiple loading and permeability control. Angewandte Chemie, 2012. 124(5): p. 1199-1202.
81. Shum, H.C., J.-W. Kim, & D.A. Weitz, Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. Journal of the American Chemical Society, 2008. 130(29): p. 9543-9549.
82. Matosevic, S. & B.M. Paegel, Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line. Journal of the American Chemical Society, 2011. 133(9): p. 2798-2800.
83. Hauschild, S., U. Lipprandt, A. Rumplecker, U. Borchert, A. Rank, R. Schubert, & S. Förster, Direct preparation and loading of lipid and polymer vesicles using inkjets. Small, 2005. 1(12): p. 1177-1180.
84. Yokoyama, M., Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. Journal of Experimental & Clinical Medicine, 2011. 3(4): p. 151-158.
85. Chen, Y., Z. Li, H. Wang, Y. Wang, H. Han, Q. Jin, & J. Ji, IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer. ACS applied materials & interfaces, 2016. 8(11): p. 6852-6858.
86. Kale, T.S., A. Klaikherd, B. Popere, & S. Thayumanavan, Supramolecular assemblies of amphiphilic homopolymers. Langmuir, 2009. 25(17): p. 9660-9670.
87. Cashion, M.P. & T.E. Long, Biomimetic design and performance of polymerizable lipids. Accounts of chemical research, 2009. 42(8): p. 1016-1025.
88. Puri, A. & R. Blumenthal, Polymeric lipid assemblies as novel theranostic tools. Accounts of chemical research, 2011. 44(10): p. 1071-1079.
89. 沐為力 & M.E.M. Muhammad, 新型磷脂聚合物微胞於藥物輸送之應用;Novel Phospholipid Polymeric Micelle for Drug Delivery Application. 國立中央大學, 2016.
90. Liu, D. & L. Huang, Role of cholesterol in the stability of pH-sensitive, large unilamellar liposomes prepared by the detergent-dialysis method. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1989. 981(2): p. 254-260.
91. Domínguez, A., A. Fernández, N. González, E. Iglesias, & L. Montenegro, Determination of critical micelle concentration of some surfactants by three techniques. J. Chem. Educ, 1997. 74(10): p. 1227.
92. Jones, M.-C. & J.-C. Leroux, Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics, 1999. 48(2): p. 101-111.
93. Farhangi, S. & J. Duhamel, Pyrenyl Derivative with a Four-Atom Linker That Can Probe the Local Polarity of Pyrene-Labeled Macromolecules. The Journal of Physical Chemistry B, 2016. 120(4): p. 834-842.
94. Astafieva, I., X.F. Zhong, & A. Eisenberg, Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules, 1993. 26(26): p. 7339-7352.
95. Kalyanasundaram, K. & J.K. Thomas, Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society, 1977. 99(7): p. 2039-2044.
96. Piñeiro, L., M. Novo, & W. Al-Soufi, Fluorescence emission of pyrene in surfactant solutions. Advances in colloid and interface science, 2015. 215: p. 1-12.
97. Bustamante, M., N. Durán, & M. Diez, Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. Journal of soil science and plant nutrition, 2012. 12(4): p. 667-687.
98. Chen, L., X. Sha, X. Jiang, Y. Chen, Q. Ren, & X. Fang, Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. International journal of nanomedicine, 2013. 8: p. 73.
99. Drug Delivery FAQs. (n.d.). Available from: https://www.sigmaaldrich.com/technical-documents/articles/materials-science/drug-delivery/drug-delivery-questions.html.
100. Chang, D. & B.D. Olsen, Self-assembly of protein-zwitterionic polymer bioconjugates into nanostructured materials. Polymer Chemistry, 2016. 7(13): p. 2410-2418.
101. Briuglia, M.-L., C. Rotella, A. McFarlane, & D.A. Lamprou, Influence of cholesterol on liposome stability and on in vitro drug release. Drug delivery and translational research, 2015. 5(3): p. 231-242.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2018-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明