參考文獻 |
1. Yu, K. & A. Eisenberg, Multiple morphologies in aqueous solutions of aggregates of polystyrene-block-poly (ethylene oxide) diblock copolymers. Macromolecules, 1996. 29(19): p. 6359-6361.
2. Shen, H. & A. Eisenberg, Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O. Macromolecules, 2000. 33(7): p. 2561-2572.
3. Discher, B.M., Y.-Y. Won, D.S. Ege, J.C. Lee, F.S. Bates, D.E. Discher, & D.A. Hammer, Polymersomes: tough vesicles made from diblock copolymers. Science, 1999. 284(5417): p. 1143-1146.
4. Ding, J. & G. Liu, Polyisoprene-block-poly (2-cinnamoylethyl methacrylate) vesicles and their aggregates. Macromolecules, 1997. 30(3): p. 655-657.
5. Kulkarni, C.V., Lipid crystallization: from self-assembly to hierarchical and biological ordering. Nanoscale, 2012. 4(19): p. 5779-5791.
6. Du, J., L. Fan, & Q. Liu, pH-sensitive block copolymer vesicles with variable trigger points for drug delivery. Macromolecules, 2012. 45(20): p. 8275-8283.
7. Marguet, M.t., O. Sandre, & S.b. Lecommandoux, Polymersomes in “gelly” polymersomes: toward structural cell mimicry. Langmuir, 2011. 28(4): p. 2035-2043.
8. Ishihara, K., Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. Science and Technology of Advanced Materials, 2000. 1(3): p. 131-138.
9. Tanner, P., O. Onaca, V. Balasubramanian, W. Meier, & C.G. Palivan, Enzymatic cascade reactions inside polymeric nanocontainers: a means to combat oxidative stress. Chemistry-A European Journal, 2011. 17(16): p. 4552-4560.
10. Zhu, Y., L. Fan, B. Yang, & J. Du, Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS nano, 2014. 8(5): p. 5022-5031.
11. Holowka, E.P., D.J. Pochan, & T.J. Deming, Charged polypeptide vesicles with controllable diameter. Journal of the American Chemical Society, 2005. 127(35): p. 12423-12428.
12. Bonduelle, C., J. Huang, E. Ibarboure, A. Heise, & S. Lecommandoux, Synthesis and self-assembly of “tree-like” amphiphilic glycopolypeptides. Chemical communications, 2012. 48(67): p. 8353-8355.
13. Tan, Y., K. Xu, Y. Li, S. Sun, & P. Wang, A robust route to fabricate starch esters vesicles. Chemical Communications, 2010. 46(25): p. 4523-4525.
14. Sanson, C., O. Diou, J. Thevenot, E. Ibarboure, A. Soum, A. Brûlet, S. Miraux, E. Thiaudière, S. Tan, & A. Brisson, Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS nano, 2011. 5(2): p. 1122-1140.
15. Ramireddy, R.R., P. Prasad, A. Finne, & S. Thayumanavan, Zwitterionic amphiphilic homopolymer assemblies. Polymer chemistry, 2015. 6(33): p. 6083-6087.
16. Antonietti, M. & S. Förster, Vesicles and liposomes: a self‐assembly principle beyond lipids. Advanced Materials, 2003. 15(16): p. 1323-1333.
17. Christian, D.A., A. Tian, W.G. Ellenbroek, I. Levental, K. Rajagopal, P.A. Janmey, A.J. Liu, T. Baumgart, & D.E. Discher, Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding. Nature materials, 2009. 8(10): p. 843-849.
18. Wong, K.E., M.C. Mora, M. Skinner, S. McRae Page, G.M. Crisi, R.B. Arenas, S.S. Schneider, & T. Emrick, Evaluation of PolyMPC-Dox Prodrugs in a Human Ovarian Tumor Model. Mol Pharm, 2016. 13(5): p. 1679-87.
19. Giacomelli, C., L. Le Men, R. Borsali, J. Lai-Kee-Him, A. Brisson, S.P. Armes, & A.L. Lewis, Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Biomacromolecules, 2006. 7(3): p. 817-828.
20. Yu, B., A.B. Lowe, & K. Ishihara, RAFT synthesis and stimulus-induced self-assembly in water of copolymers based on the biocompatible monomer 2-(methacryloyloxy) ethyl phosphorylcholine. Biomacromolecules, 2009. 10(4): p. 950-958.
21. Xu, J.P., J. Ji, W.D. Chen, & J.C. Shen, Novel biomimetic surfactant: synthesis and micellar characteristics. Macromol Biosci, 2005. 5(2): p. 164-71.
22. Zhao, X., Z. Zhang, F. Pan, T.A. Waigh, & J.R. Lu, Plasmid DNA complexation with phosphorylcholine diblock copolymers and its effect on cell transfection. Langmuir, 2008. 24(13): p. 6881-6888.
23. Yusa, S.-i., K. Fukuda, T. Yamamoto, K. Ishihara, & Y. Morishima, Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules, 2005. 6(2): p. 663-670.
24. Ishihara, K., Phospholipid polymers. Encyclopedia of Polymer Science and Technology. 2012, New York (NY): John Wiley & Sons, Inc.
25. Xu, J.P., J. Ji, W.D. Chen, & J.C. Shen, Novel biomimetic surfactant: synthesis and micellar characteristics. Macromolecular bioscience, 2005. 5(2): p. 164-171.
26. Cai, M.T., J. Cao, Z.Z. Wu, F.R. Cheng, Y.W. Chen, & X.L. Luo, In vitro and in vivo anti-tumor efficiency comparison of phosphorylcholine micelles with PEG micelles. Colloids and Surfaces B-Biointerfaces, 2017. 157: p. 268-279.
27. Singer, S. & G.L. Nicolson, The fluid mosaic model of the structure of cell membranes. Membranes and Viruses in Immunopathology; Day, SB, Good, RA, Eds, 1972: p. 7-47.
28. Zwaal, R., P. Comfurius, & L. Van Deenen, Membrane asymmetry and blood coagulation. 1977.
29. Daemen, F., H. HART, C. van der Drift, & L. VAN DEENEN, Activity of Synthetic Phospholipid in Blood Coagulation. Thrombosis et diathesis haemorrhagica, 1965. 13: p. 194.
30. Hess, M., R.G. Jones, J. Kahovec, T. Kitayama, P. Kratochvíl, P. Kubisa, W. Mormann, R. Stepto, D. Tabak, & J. Vohlídal, Terminology of polymers containing ionizable or ionic groups and of polymers containing ions (IUPAC Recommendations 2006). Pure and Applied Chemistry, 2006. 78(11): p. 2067-2074.
31. Laschewsky, A., Structures and synthesis of zwitterionic polymers. Polymers, 2014. 6(5): p. 1544-1601.
32. Tarannum, N. & M. Singh, Advances in synthesis and applications of sulfo and carbo analogues of polybetaines: a review. Reviews in Advanced Sciences and Engineering, 2013. 2(2): p. 90-111.
33. Alfrey Jr, T., H. Morawetz, E.B. Fitzgerald, & R.M. Fuoss, Synthetic electrical analog of proteins1. Journal of the American Chemical Society, 1950. 72(4): p. 1864-1864.
34. Zhang, Z., T. Chao, & S. Jiang, Physical, chemical, and chemical-physical double network of zwitterionic hydrogels. The Journal of Physical Chemistry B, 2008. 112(17): p. 5327-5332.
35. Carr, L., G. Cheng, H. Xue, & S. Jiang, Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels. Langmuir, 2010. 26(18): p. 14793-14798.
36. Jiang, S. & Z. Cao, Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 2010. 22(9): p. 920-932.
37. Zwaal, R. & H.C. Hemker, Blood cell membranes and haemostasis. Pathophysiology of Haemostasis and Thrombosis, 1982. 11(1): p. 12-39.
38. Ishihara, K., K. Fukumoto, Y. Iwasaki, & N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials, 1999. 20(17): p. 1553-1559.
39. Kojima, M., K. Ishihara, A. Watanabe, & N. Nakabayashi, Interaction between phospholipids and biocompatible polymers containing a phosphorylcholine moiety. Biomaterials, 1991. 12(2): p. 121-124.
40. Wu, L., Z. Guo, S. Meng, W. Zhong, Q. Du, & L.L. Chou, Synthesis of a zwitterionic silane and its application in the surface modification of silicon-based material surfaces for improved hemocompatibility. ACS applied materials & interfaces, 2010. 2(10): p. 2781-2788.
41. Ishihara, K., T. Ueda, & N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J, 1990. 22(5): p. 355-360.
42. Kadoma, Y., N. Nakabayashi, E. Masuhara, & J. Yamauchi, Synthesis and hemolysis test of polymer containing phosphorylcholine groups. Kobunshi Ronbunshu, 1978. 35(7): p. 423-427.
43. Iwasaki, Y., M. Ijuin, A. Mikami, N. Nakabayashi, & K. Ishihara, Behavior of blood cells in contact with water‐soluble phospholipid polymer. Journal of biomedical materials research, 1999. 46(3): p. 360-367.
44. Nakaya, T., H. Toyoda, & M. Imoto, Polymeric Phospholipid Analogues XIII. Synthesis and Properties of Vinyl Polymers Containing Phosphatidyl Choline Groups. Polymer journal, 1986. 18(11): p. 881-885.
45. Lewis, A.L. & A.W. Lloyd, Biomedical Applications of Biomimetic Polymers: The Phosphorylcholine‐Containing Polymers. Biomimetic, Bioresponsive, and Bioactive Materials: An Introduction to Integrating Materials with Tissues, 2012: p. 95-140.
46. Hu, G., S.S. Parelkar, & T. Emrick, A facile approach to hydrophilic, reverse zwitterionic, choline phosphate polymers. Polymer Chemistry, 2015. 6(4): p. 525-530.
47. Yu, X., X. Yang, S. Horte, J.N. Kizhakkedathu, & D.E. Brooks, ATRP synthesis of poly(2-(methacryloyloxy)ethyl choline phosphate): a multivalent universal biomembrane adhesive. Chem Commun (Camb), 2013. 49(61): p. 6831-3.
48. Hu, G. & T. Emrick, Functional Choline Phosphate Polymers. J Am Chem Soc, 2016. 138(6): p. 1828-31.
49. Mishra, V. & R. Kumar, Living radical polymerization: A review. Journal of Scientific Research, 2012. 56: p. 141-176.
50. Lowe, A.B. & C.L. McCormick, Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science, 2007. 32(3): p. 283-351.
51. Matyjaszewski, K., Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules, 2012. 45(10): p. 4015-4039.
52. Tsarevsky, N.V. & K. Matyjaszewski, "Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev, 2007. 107(6): p. 2270-99.
53. Moad, G., Y.K. Chong, A. Postma, E. Rizzardo, & S.H. Thang, Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer, 2005. 46(19): p. 8458-8468.
54. Moad, G., E. Rizzardo, & S.H. Thang, Radical addition–fragmentation chemistry in polymer synthesis. Polymer, 2008. 49(5): p. 1079-1131.
55. Puts, R.D. & D.Y. Sogah, Control of living free-radical polymerization by a new chiral nitroxide and implications for the polymerization mechanism. Macromolecules, 1996. 29(9): p. 3323-3325.
56. Le, T., G. Moad, E. Rizzardo, & S. Thang, Inventors; polymerization with living characteristics. WO, 1998. 98: p. 01478.
57. Mayadunne, R.T., E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, & S.H. Thang, Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps. Macromolecules, 2000. 33(2): p. 243-245.
58. Keddie, D.J., C. Guerrero-Sanchez, G. Moad, E. Rizzardo, & S.H. Thang, Switchable reversible addition–fragmentation chain transfer (RAFT) polymerization in aqueous solution, N, N-dimethylacrylamide. Macromolecules, 2011. 44(17): p. 6738-6745.
59. Moad, G., E. Rizzardo, & S.H. Thang, Living radical polymerization by the RAFT process. Australian journal of chemistry, 2005. 58(6): p. 379-410.
60. Moad, G., E. Rizzardo, & S.H. Thang, Living radical polymerization by the RAFT process–a third update. Australian Journal of Chemistry, 2012. 65(8): p. 985-1076.
61. Moad, G., E. Rizzardo, & S.H. Thang, Toward living radical polymerization. Accounts of chemical research, 2008. 41(9): p. 1133-1142.
62. Chiefari, J., Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P. Le, R.T. Mayadunne, G.F. Meijs, C.L. Moad, & G. Moad, Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules, 1998. 31(16): p. 5559-5562.
63. Barner‐Kowollik, C., J.P. Blinco, M. Destarac, K.J. Thurecht, & S. Perrier, Reversible addition fragmentation chain transfer (RAFT) polymerization: mechanism, process and applications. Encyclopedia of radicals in chemistry, biology and materials, 2012.
64. Veloso, A., W. García, A. Agirre, N. Ballard, F. Ruipérez, C. José, & J.M. Asua, Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS. Polymer Chemistry, 2015. 6(30): p. 5437-5450.
65. Liu, Q., S. Chen, J. Chen, & J. Du, An asymmetrical polymer vesicle strategy for significantly improving T 1 MRI sensitivity and cancer-targeted drug delivery. Macromolecules, 2015. 48(3): p. 739-749.
66. Popescu, M.-T., M. Korogiannaki, K. Marikou, & C. Tsitsilianis, CBABC terpolymer-based nanostructured vesicles with tunable membrane permeability as potential hydrophilic drug nanocarriers. Polymer, 2014. 55(13): p. 2943-2951.
67. Themistou, E., G. Battaglia, & S.P. Armes, Facile synthesis of thiol-functionalized amphiphilic polylactide–methacrylic diblock copolymers. Polymer Chemistry, 2014. 5(4): p. 1405-1417.
68. Du, J. & R.K. O′Reilly, Advances and challenges in smart and functional polymer vesicles. Soft Matter, 2009. 5(19): p. 3544-3561.
69. Lee, J.C.M., H. Bermudez, B.M. Discher, M.A. Sheehan, Y.Y. Won, F.S. Bates, & D.E. Discher, Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnology and bioengineering, 2001. 73(2): p. 135-145.
70. Du, J. & S.P. Armes, Preparation of biocompatible zwitterionic block copolymer vesicles by direct dissolution in water and subsequent silicification within their membranes. Langmuir, 2009. 25(16): p. 9564-9570.
71. Nikova, A.T., V.D. Gordon, G. Cristobal, M.R. Talingting, D.C. Bell, C. Evans, M. Joanicot, J.A. Zasadzinski, & D.A. Weitz, Swollen vesicles and multiple emulsions from block copolymers. Macromolecules, 2004. 37(6): p. 2215-2218.
72. Du, J., Y. Tang, A.L. Lewis, & S.P. Armes, pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. Journal of the American Chemical Society, 2005. 127(51): p. 17982-17983.
73. Takahashi, R., T. Sato, K. Terao, & S.-i. Yusa, Reversible vesicle–spherical micelle transition in a polyion complex micellar system induced by changing the mixing ratio of copolymer components. Macromolecules, 2016. 49(8): p. 3091-3099.
74. Li, Y., B.S. Lokitz, & C.L. McCormick, Thermally responsive vesicles and their structural “locking” through polyelectrolyte complex formation. Angewandte Chemie International Edition, 2006. 45(35): p. 5792-5795.
75. Blanazs, A., J. Madsen, G. Battaglia, A.J. Ryan, & S.P. Armes, Mechanistic insights for block copolymer morphologies: how do worms form vesicles? Journal of the American Chemical Society, 2011. 133(41): p. 16581-16587.
76. Wan, W.-M., C.-Y. Hong, & C.-Y. Pan, One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition. Chemical Communications, 2009(39): p. 5883-5885.
77. Charleux, B., G. Delaittre, J. Rieger, & F. D’Agosto, Polymerization-induced self-assembly: from soluble macromolecules to block copolymer nano-objects in one step. Macromolecules, 2012. 45(17): p. 6753-6765.
78. Warren, N.J. & S.P. Armes, Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc, 2014. 136(29): p. 10174-10185.
79. Zhu, Y., B. Yang, S. Chen, & J. Du, Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Progress in Polymer Science, 2017. 64: p. 1-22.
80. Marguet, M., L. Edembe, & S. Lecommandoux, Polymersomes in polymersomes: multiple loading and permeability control. Angewandte Chemie, 2012. 124(5): p. 1199-1202.
81. Shum, H.C., J.-W. Kim, & D.A. Weitz, Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. Journal of the American Chemical Society, 2008. 130(29): p. 9543-9549.
82. Matosevic, S. & B.M. Paegel, Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line. Journal of the American Chemical Society, 2011. 133(9): p. 2798-2800.
83. Hauschild, S., U. Lipprandt, A. Rumplecker, U. Borchert, A. Rank, R. Schubert, & S. Förster, Direct preparation and loading of lipid and polymer vesicles using inkjets. Small, 2005. 1(12): p. 1177-1180.
84. Yokoyama, M., Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. Journal of Experimental & Clinical Medicine, 2011. 3(4): p. 151-158.
85. Chen, Y., Z. Li, H. Wang, Y. Wang, H. Han, Q. Jin, & J. Ji, IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer. ACS applied materials & interfaces, 2016. 8(11): p. 6852-6858.
86. Kale, T.S., A. Klaikherd, B. Popere, & S. Thayumanavan, Supramolecular assemblies of amphiphilic homopolymers. Langmuir, 2009. 25(17): p. 9660-9670.
87. Cashion, M.P. & T.E. Long, Biomimetic design and performance of polymerizable lipids. Accounts of chemical research, 2009. 42(8): p. 1016-1025.
88. Puri, A. & R. Blumenthal, Polymeric lipid assemblies as novel theranostic tools. Accounts of chemical research, 2011. 44(10): p. 1071-1079.
89. 沐為力 & M.E.M. Muhammad, 新型磷脂聚合物微胞於藥物輸送之應用;Novel Phospholipid Polymeric Micelle for Drug Delivery Application. 國立中央大學, 2016.
90. Liu, D. & L. Huang, Role of cholesterol in the stability of pH-sensitive, large unilamellar liposomes prepared by the detergent-dialysis method. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1989. 981(2): p. 254-260.
91. Domínguez, A., A. Fernández, N. González, E. Iglesias, & L. Montenegro, Determination of critical micelle concentration of some surfactants by three techniques. J. Chem. Educ, 1997. 74(10): p. 1227.
92. Jones, M.-C. & J.-C. Leroux, Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics, 1999. 48(2): p. 101-111.
93. Farhangi, S. & J. Duhamel, Pyrenyl Derivative with a Four-Atom Linker That Can Probe the Local Polarity of Pyrene-Labeled Macromolecules. The Journal of Physical Chemistry B, 2016. 120(4): p. 834-842.
94. Astafieva, I., X.F. Zhong, & A. Eisenberg, Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules, 1993. 26(26): p. 7339-7352.
95. Kalyanasundaram, K. & J.K. Thomas, Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society, 1977. 99(7): p. 2039-2044.
96. Piñeiro, L., M. Novo, & W. Al-Soufi, Fluorescence emission of pyrene in surfactant solutions. Advances in colloid and interface science, 2015. 215: p. 1-12.
97. Bustamante, M., N. Durán, & M. Diez, Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. Journal of soil science and plant nutrition, 2012. 12(4): p. 667-687.
98. Chen, L., X. Sha, X. Jiang, Y. Chen, Q. Ren, & X. Fang, Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. International journal of nanomedicine, 2013. 8: p. 73.
99. Drug Delivery FAQs. (n.d.). Available from: https://www.sigmaaldrich.com/technical-documents/articles/materials-science/drug-delivery/drug-delivery-questions.html.
100. Chang, D. & B.D. Olsen, Self-assembly of protein-zwitterionic polymer bioconjugates into nanostructured materials. Polymer Chemistry, 2016. 7(13): p. 2410-2418.
101. Briuglia, M.-L., C. Rotella, A. McFarlane, & D.A. Lamprou, Influence of cholesterol on liposome stability and on in vitro drug release. Drug delivery and translational research, 2015. 5(3): p. 231-242.
|