博碩士論文 104881605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.139.97.68
姓名 蘇佳雅(Supitchaya Traisaeng)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 產生丁酸的益生菌對異位性皮膚炎和第一型糖尿病的 影響
(Effects of butyric acid-producing probiotic bacteria on atopic dermatitis and type 1 diabetes)
相關論文
★ The Probiotic Activity of Human Microbiome Against Methicillin-Resistant Staphylococcus aureus Infection and Obesity
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 大多數患有異位性皮膚炎(AD)有90%以上的患者被金黃色葡萄球菌(金黃色葡萄球菌)定植/感染,金黃色葡萄球菌是一種伺機性細菌,與皮膚炎症惡化有關。但是,目前對AD的治療是有限的。目前在益生菌(共生菌可以在宿主中預防病原體定植)的研究中已發揮作用,已被證明是一種有前途的預防和治療感染的方法。來自微生物組體的代謝產物被用於開發創新藥物。表皮葡萄球菌(S. epidermidis,皮膚益生菌)當其發酵後的短鏈脂肪酸,發酵代謝產物之一丁酸。本研究的第一個目的是證明丁酸類似物對來自於AD患者皮膚(AD S. aureus)和炎症的金黃色葡萄球菌過度生長的影響。表皮葡萄球菌經甘油發酵產生丁酸,在體外和體內皆能有效抑制來自於異位性皮膚炎患者皮膚病變中分離出的金黃色葡萄球菌菌株的生長。但是,該方法不太可能應用在治療上,因為丁酸具有氣味,並且需要mM範圍內的高最低殺菌濃度(MBC)才能抑制金黃色葡萄球菌的生長。因此丁酸的衍生物BA-NH-NH-BA,是通過將兩個丁酸與-NH-O-NH-接頭兩端綴合而合成的。 BA-NH-NH-BA降低了AD金黃色葡萄球菌的丁酸MBC含量。丁酸和BA-NH-NH-BA當組蛋白脫乙酰基酶(HDAC)抑製劑,以誘導人類角質形成細胞中組蛋白H3賴氨酸9(AcH3K9)的乙酰化。此外,BA-NH-NH-BA可以改善金黃色葡萄球菌誘導的IL-6的產生,並顯著降低小鼠皮膚中金黃色葡萄球菌的定殖。這些結果表明,皮膚微生物組發酵代謝產物的新型衍生物丁酸具有金黃色葡萄球菌的殺菌活性和對抗金黃色葡萄球菌感染所產生的消炎作用。
補充益生菌可以減少產生糖尿病的風險。在患有第1型糖尿病兒童身上的細菌所產生丁酸的定殖率較低。因此我們假設從蒙古凝乳乾酪中產生丁酸菌株Leuconostoc mesenteroides(L. mesenteroides)EH-1可以降低糖尿病患者的血糖,為了確認短鏈脂肪酸受體2(Ffar2)是否介導丁酸的作用,因此使用Min6細胞及第1型糖尿病小鼠研究Ffar2對腸系膜腸球菌L. mesenteroides EH-1的血糖調節中的作用,Ffar2的抑製作用是否可調控第1型糖尿病小鼠血糖和胰島素的血中濃度。在體外和體內實驗中L. mesenteroides EH-1的葡萄糖發酵皆誘導了高濃度的丁酸生成。用丁酸處理Min6細胞後,可檢測到胰島素分泌,但是當Ffar2被siRNA抑制時,胰島素的分泌被顯著抑制。補充L. mesenteroides EH-1及丁酸在小鼠實驗中可以增強老鼠血液胰島素,降低血糖和白介素(IL)-6的水平。結果顯示 L. mesenteroides EH-1 調控了Ffar2的抑製作用降低第1型糖尿病小鼠的血糖。
摘要(英) Most patients (up to 90%) with atopic dermatitis (AD) are colonized/infected with Staphylococcus aureus (S. aureus), an opportunistic bacteria implicated in worsening skin inflammation. However, the current treatments for AD are limited. Probiotic bacteria, in which commensal bacteria can function in the prevention of the host from pathogen colonization, is a promising modality for the prevention and treatment of infections. The metabolites from microbiome were used for the development of innovative drugs. One of the short-chain fatty acid fermentation metabolites by Staphylococcus epidermidis (S. epidermidis, the skin probiotic bacterium) is butyric acid. The first object of this study was to demonstrate the effect of butyric acid analog on the overgrowth of S. aureus that isolated from inflammatory AD skin (AD S. aureus). Glycerol fermentation by S. epidermidis resulted in the production of butyric acid and effectively inhibited the growth of S. aureus isolated strain from lesional skin with AD in vitro and in vivo. However, this approach is unlikely to be therapeutically useful since butyric acid is malodorous and requires the mM range of a high minimum bactericidal concentration (MBC) for suppression of AD S. aureus growth. A derivative of butyric acid, names BA-NH-NH-BA, was synthesized by conjugation of two butyric acids to a -NH-O-NH- linker both ends. BA-NH-NH-BA lowered the significant butyric acid MBC for AD S. aureus. Butyric acid and BA-NH-NH-BA functioned as a histone deacetylase (HDAC) inhibitor to induce acetylation of Histone H3 lysine 9 (AcH3K9) in human keratinocytes. Furthermore, BA-NH-NH-BA could ameliorate AD S. aureus-induced production of interleukin (IL)-6 and remarkably decreased the AD S. aureus colonization in mouse skin. These results indicate that a novel derivative butyric acid of a skin microbiome fermentation metabolite exhibits S. aureus bactericidal and anti-inflammatory activities caused by S. aureus infection.
Probiotic bacterial supplementary diet can prevent the risks of diabetes. Whereas, type 1 diabetic children showed the low colonization of bacteria producing butyrate. We
iii
hypothesize that a butyric acid-producing Leuconostoc mesenteroides (L. mesenteroides) EH-1 strain from Mongolian curd cheese can reduce blood glucose in diabetic individuals and aim to examine if free fatty acid receptor 2 (Ffar2) mediates the action of butyric acid in the regulation of blood levels of glucose and insulin in a type 1 diabetes mice. The inhibition of Ffar2 in Min6 cells or type 1 diabetic mice, was conducted to examine the involvement of Ffar2 in the blood glucose regulation by L. mesenteroides EH-1. The glucose fermentation (in vitro) and feeding (in vivo) of L. mesenteroides EH-1 induced a high concentration of butyric acid production. The secretion of insulin was detected after treatment of Min6 cells with butyric acid but considerably suppressed when Ffar2 was knocked down by siRNA. Supplementation of streptozotocin (STZ)-induced type 1 diabetic mice with butyric acid or L. mesenteroides EH-1 boosted the blood insulin and lowered the levels of blood glucose and IL-6. Inhibition of Ffar2 significantly reduced the action of butyric acid or L. mesenteroides EH-1 for blood glucose reduction in type 1 diabetic mice. Therefore, Ffar2 mediated the probiotic activity of butyric acid-producing by L. mesenteroides EH-1 on reduction of blood glucose in diabetic mice.
關鍵字(中) ★ 特應性皮炎
★ 丁酸
★ 發酵
★ 益生菌
★ 一型糖尿病
關鍵字(英) ★ atopic dermatitis
★ butyric acid
★ fermentation
★ Probiotic bacteria
★ Type 1 diabetes
論文目次 Abstract in Chinese ........................................................................................................ i
Abstract in English ....................................................................................................... iiii
Acknowledgment...........................................................................................................iv
Table of Contents ..........................................................................................................vi
List of Figures ...............................................................................................................xi
Abbreviations .............................................................................................................. xiii
Chapter 1 Literature review ........................................................................................ 1
1.1. Atopic dermatitis (AD) ........................................................................................ 1
1.2. Beneficial effects of probiotic bacteria in AD ...................................................... 2
1.3. Staphylococcus aureus (S. aureus) colonization in AD ..................................... 2
1.4. Inflammation in AD with S. aureus colonization ................................................. 3
1.5. Short-chain fatty acids (SCFAs) and anti-inflammatory activity ......................... 5
1.6. SCFAs and anti-bacterial activity ....................................................................... 5
1.7. Type 1 diabetes ................................................................................................. 6
1.8. Type 1 diabetes and gut probiotic bacteria ........................................................ 8
1.9. Diabetes and free fatty acid receptor 2 (Ffar2) .................................................. 8
1.10. Rationale of the present study ....................................................................... 10
1.10.1. Aims of the present study ..................................................................... 10
1.10.2. Questions raised in the present study .................................................. 11
1.10.3. Structure of the thesis .......................................................................... 12
Chapter 2 An analog of butyric acid, like the fermentation metabolite of S. epidermidis, inhibits an AD skin isolated S. aureus strain growth ......................... 13
2.1. Abstract ........................................................................................................... 13
2.2. Introduction ...................................................................................................... 14
2.3. Materials and Methods .................................................................................... 16
2.3.1. Ethics Statement .................................................................................... 16
2.3.2. Bacterial culture ..................................................................................... 16
2.3.3. Bacterial sampling with tape strips ......................................................... 16
2.3.4. Co-culture of AD S. aureus and S. epidermidis in vitro .......................... 17
2.3.5. In Vivo effects of S. epidermidis glycerol fermentation on skin colonization of AD S. aureus ............................................................................ 17
2.3.2. Synthesis of BA–NH–NH–BA ................................................................. 18
2.3.3. Suppression of bacterial growth ............................................................. 19
2.3.4. Cell culture ............................................................................................. 19
2.3.5. Western blotting ..................................................................................... 19
2.3.6. Keratinocytes treated with bacterial lysates in the presence or absence of BA-BNH-NH-BA ............................................................................................... 20
2.3.7. Administration of 3,3′-Diindolylmethane (DIM) as HDAC inhibitor into mice ................................................................................................................. 20
2.3.8. Gas chromatography (GC) analysis ....................................................... 21
viii
2.3.9. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay ................................................................................................................ 21
2.3.10. Statistical analysis ................................................................................ 21
2.4. Results and discussion .................................................................................... 22
2.4.1. High abundance of S. aureus colonization was observed in lesional skin of AD patients ................................................................................................... 22
2.4.2. S. epidermidis-induced glycerol fermentation inhibits AD S. aureus growth in vitro ................................................................................................... 24
2.4.3. Glycerol fermentation of S. epidermidis suppresses AD S. aureus growth in mouse skin ................................................................................................... 26
2.4.4. Butyric acid and butyric acid analog (BA-NH-NH-BA) have an anti-AD S. aureus activities ............................................................................................... 28
2.4.5. BA–NH–NH–BA can Inhibit HDAC activity and AD S. aureus growth .... 32
2.4.6. BA-NH-NH-BA reduces AD S. aureus-induced IL-6 production in keratinocytes and mice .................................................................................... 35
2.4.7. HDAC antagonist can suppress IL-6 production but not affect the number of AD S. aureus in the HDAC-depleted mice .................................................... 36
2.5. Conclusions ..................................................................................................... 38
Chapter 3 Butyric acid production of L. mesenteroides fermentation mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice ...................... 39
3.1. Abstract ........................................................................................................... 39
3.2. Introduction ...................................................................................................... 40
3.3. Methods ........................................................................................................... 41
ix
3.3.1 Bacterial culture and identification ........................................................... 41
3.3.2. Glucose fermentation of L. mesenteroides EH-1 .................................... 41
3.3.3. Min6 cell treatments ............................................................................... 42
3.3.4. Streptozotocin (STZ)-induced type 1 diabetic mice ................................ 43
3.3.5. Diabetic mice treated with butyric acid ................................................... 43
3.3.6. Feeding mice with L. mesenteroides EH-1 ............................................. 44
3.3.7. HPLC analysis ........................................................................................ 44
3.3.9. Effects of temperatures and pH values on L. mesenteroides EH-1 growth ......................................................................................................................... 46
3.3.10. Glucose tolerance test (OGTT) ............................................................ 46
3.3.11. RT-PCR ................................................................................................ 46
3.3.12. Statistical analysis ................................................................................ 47
3.4. Results and discussion .................................................................................... 48
3.4.1. L. mesenteroides EH-1 .................... can ferment glucose to produce butyric acid 48
3.4.2. Butyric acid stimulated insulin secretion from Min6 cells via Ffar2 ......... 52
3.4.3. Butyric acid mediates blood glucose and insulin regulations via Ffar2 in the in type 1 diabetic mice ................................................................................ 54
3.4.4. Butyric acid-producing L. mesenteroides EH-1 mediates blood glucose and insulin regulations via Ffar2 in the in type 1 diabetic mice......................... 58
3.4.5. The role of butyric acid-producing by L. mesenteroides EH-1 in IL-6 production of STZ-induced type 1 diabetic mice .............................................. 63
x
3.5. Conclusions ..................................................................................................... 65
Chapter 4 Summary, concluding remarks, and future aspects ............................... 66
References ................................................................................................................... 70
Appendix 1 Conference presentations ...................................................................... 91
Appendix 2 Abstract of conference presentations ................................................... 92
Appendix 3 List of publications ................................................................................. 98
參考文獻 1. Kay, J., et al., The prevalence of childhood atopic eczema in a general population. Journal of the American Academy of Dermatology, 1994. 30(1): p. 35-39.
2. Palmer, C.N., et al., Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature genetics, 2006. 38(4): p. 441-446.
3. Weidinger, S., et al., Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. Journal of Allergy and Clinical Immunology, 2006. 118(1): p. 214-219.
4. Marenholz, I., et al., Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. Journal of Allergy and Clinical Immunology, 2006. 118(4): p. 866-871.
5. Lee, G.R. and R.A. Flavell, Transgenic mice which overproduce Th2 cytokines develop spontaneous atopic dermatitis and asthma. International immunology, 2004. 16(8): p. 1155-1160.
6. Mjösberg, J. and L. Eidsmo, Update on innate lymphoid cells in atopic and non‐atopic inflammation in the airways and skin. Clinical & Experimental Allergy, 2014. 44(8): p. 1033-1043.
7. Howell, M.D., et al., Cytokine modulation of atopic dermatitis filaggrin skin expression. Journal of Allergy and Clinical Immunology, 2009. 124(3): p. R7-R12.
71
8. Spergel, J.M. and A.S. Paller, Atopic dermatitis and the atopic march. Journal of Allergy and Clinical Immunology, 2003. 112(6): p. S118-S127.
9. Ouwehand, A.C., S. Salminen, and E. Isolauri, Probiotics: an overview of beneficial effects, in Lactic Acid Bacteria: Genetics, Metabolism and Applications. 2002, Springer. p. 279-289.
10. Saavedra, J.M., et al., Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. The lancet, 1994. 344(8929): p. 1046-1049.
11. Shornikova, A.-V., et al., Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. The Pediatric infectious disease journal, 1997. 16(12): p. 1103-1107.
12. Link-Amster, H., et al., Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunology & Medical Microbiology, 1994. 10(1): p. 55-63.
13. Viljanen, M., et al., Probiotics in the treatment of atopic eczema/dermatitis syndrome in infants: a double‐blind placebo‐controlled trial. Allergy, 2005. 60(4): p. 494-500.
14. Weston, S., et al., Effects of probiotics on atopic dermatitis: a randomised controlled trial. Archives of disease in childhood, 2005. 90(9): p. 892-897.
15. Kalliomäki, M., et al., Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. The Lancet, 2001. 357(9262): p. 1076-1079.
72
16. Abrahamsson, T.R., et al., Probiotics in prevention of IgE-associated eczema: a double-blind, randomized, placebo-controlled trial. Journal of Allergy and Clinical Immunology, 2007. 119(5): p. 1174-1180.
17. LEYDEN, J.J., R.R. MARPLES, and A.M. KLIGMAN, Staphylococcus aureus in the lesions of atopic dermatitis. British Journal of Dermatology, 1974. 90(5): p. 525-525.
18. Roll, A., et al., Microbial colonization and atopic dermatitis. Current opinion in allergy and clinical immunology, 2004. 4(5): p. 373-378.
19. Aly, R., H.I. Maibach, and H.R. Shinefield, Microbial flora of atopic dermatitis. Arch dermatol, 1977. 113(6): p. 780-782.
20. David, T. and G. Cambridge, Bacterial infection and atopic eczema. Archives of disease in childhood, 1986. 61(1): p. 20-23.
21. Hanifin, J.M. and J.L. Rogge, Staphylococcal infections in patients with atopic dermatitis. Archives of dermatology, 1977. 113(10): p. 1383-1386.
22. Hoeger, P.H., et al., Staphylococcal skin colonization in children with atopic dermatitis: prevalence, persistence, and transmission of toxigenic and nontoxigenic strains. Journal of Infectious Diseases, 1992. 165(6): p. 1064-1068.
23. Iwamoto, K., et al., Staphylococcus aureus from atopic dermatitis skin alters cytokine production triggered by monocyte-derived Langerhans cell. Journal of dermatological science, 2017. 88(3): p. 271-279.
24. Fleury, O.M., et al., Clumping factor B promotes adherence of Staphylococcus aureus to corneocytes in atopic dermatitis. Infection and immunity, 2017. 85(6): p. e00994-16.
73
25. Hepburn, L., et al., The complex biology and contribution of Staphylococcus aureus in atopic dermatitis, current and future therapies. British Journal of Dermatology, 2017. 177(1): p. 63-71.
26. Williams, M.R. and R.L. Gallo, The role of the skin microbiome in atopic dermatitis. Current allergy and asthma reports, 2015. 15(11): p. 65.
27. Fedenko, E.S., et al., Cytokine gene expression in the skin and peripheral blood of atopic dermatitis patients and healthy individuals. Self/nonself, 2011. 2(2): p. 120-124.
28. Sasaki, T., et al., Effects of staphylococci on cytokine production from human keratinocytes. British Journal of Dermatology, 2003. 148(1): p. 46-50.
29. Son, E.D., et al., Staphylococcus aureus inhibits terminal differentiation of normal human keratinocytes by stimulating interleukin-6 secretion. Journal of dermatological science, 2014. 74(1): p. 64-71.
30. Duncan, M.R. and B. Berman, Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin 6. Journal of Investigative Dermatology, 1991. 97(4): p. 686-692.
31. Grossman, R.M., et al., Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proceedings of the National Academy of Sciences, 1989. 86(16): p. 6367-6371.
32. Keshari, S., et al., Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. International journal of molecular sciences, 2019. 20(18): p. 4477.
74
33. Shu, M., et al., Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PloS one, 2013. 8(2): p. e55380.
34. Meijer, K., P. de Vos, and M.G. Priebe, Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Current Opinion in Clinical Nutrition & Metabolic Care, 2010. 13(6): p. 715-721.
35. Cavaglieri, C.R., et al., Differential effects of short-chain fatty acids on proliferation and production of pro-and anti-inflammatory cytokines by cultured lymphocytes. Life sciences, 2003. 73(13): p. 1683-1690.
36. Tedelind, S., et al., Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World journal of gastroenterology: WJG, 2007. 13(20): p. 2826.
37. Park, J.-S., et al., Anti-inflammatory effects of short chain fatty acids in IFN-γ-stimulated RAW 264.7 murine macrophage cells: Involvement of NF-κB and ERK signaling pathways. International immunopharmacology, 2007. 7(1): p. 70-77.
38. Davie, J.R., Inhibition of histone deacetylase activity by butyrate. The Journal of nutrition, 2003. 133(7): p. 2485S-2493S.
39. Sanford, J.A., et al., Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Science immunology, 2016. 1(4): p. eaah4609.
40. Giraffa, G., Studying the dynamics of microbial populations during food fermentation. FEMS Microbiology Reviews, 2004. 28(2): p. 251-260.
75
41. Ren, T., et al., 16 S rRNA survey revealed complex bacterial communities and evidence of bacterial interference on human adenoids. Environmental microbiology, 2013. 15(2): p. 535-547.
42. Iwase, T., et al., Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature, 2010. 465(7296): p. 346.
43. Naik, S., et al., Compartmentalized control of skin immunity by resident commensals. Science, 2012. 337(6098): p. 1115-1119.
44. Kao, M.S., et al., Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin‐resistant Staphylococcus aureus. Biotechnology journal, 2017. 12(4).
45. Traisaeng, S., et al., A derivative of butyric acid, the fermentation metabolite of Staphylococcus epidermidis, inhibits the growth of a Staphylococcus aureus strain isolated from atopic dermatitis patients. Toxins, 2019. 11(6): p. 311.
46. Cianciaruso, C., et al., Primary human and rat β-cells release the intracellular autoantigens GAD65, IA-2, and proinsulin in exosomes together with cytokine-induced enhancers of immunity. Diabetes, 2017. 66(2): p. 460-473.
47. Kumar, V., et al., Robbins and Cotran pathologic basis of disease, professional edition e-book. 2014: Elsevier health sciences.
48. Bluestone, J.A., K. Herold, and G. Eisenbarth, Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature, 2010. 464(7293): p. 1293.
49. Dabelea, D., et al., Incidence of diabetes in youth in the United States. Jama, 2007. 297(24): p. 2716-2724.
76
50. Diana, J., et al., Innate immunity in type 1 diabetes. Discovery Medicine, 2011. 11(61): p. 513-520.
51. Atkinson, M.A., et al., How does type 1 diabetes develop?: the notion of homicide or β-cell suicide revisited. Diabetes, 2011. 60(5): p. 1370-1379.
52. Kristiansen, O.P. and T. Mandrup-Poulsen, Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes, 2005. 54(suppl 2): p. S114-S124.
53. Gurr, W., et al., A Reg family protein is overexpressed in islets from a patient with new-onset type 1 diabetes and acts as T-cell autoantigen in NOD mice. Diabetes, 2002. 51(2): p. 339-346.
54. Jin, H., et al., IL-6 Promotes Islet β-Cell Dysfunction in Rat Collagen-Induced Arthritis. Journal of diabetes research, 2016. 2016.
55. Forslund, K., et al., Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015. 528(7581): p. 262.
56. Musso, G., R. Gambino, and M. Cassader, Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annual review of medicine, 2011. 62: p. 361-380.
57. Wen, L., et al., Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 2008. 455(7216): p. 1109.
58. Valladares, R., et al., Lactobacillus johnsonii N6. 2 mitigates the development of type 1 diabetes in BB-DP rats. Plos one, 2010. 5(5): p. e10507.
77
59. Matsuzaki, T., et al., Prevention of onset in an insulin‐dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. Apmis, 1997. 105(7‐12): p. 643-649.
60. Calcinaro, F., et al., Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia, 2005. 48(8): p. 1565-1575.
61. Yadav, H., S. Jain, and P. Sinha, Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition, 2007. 23(1): p. 62-68.
62. Al-Salami, H., et al., Probiotic treatment reduces blood glucose levels and increases systemic absorption of gliclazide in diabetic rats. European journal of drug metabolism and pharmacokinetics, 2008. 33(2): p. 101-106.
63. Zhang, Q., Y. Wu, and X. Fei, Effect of probiotics on glucose metabolism in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Medicina, 2016. 52(1): p. 28-34.
64. Louis, P. and H.J. Flint, Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS microbiology letters, 2009. 294(1): p. 1-8.
65. Li, X., et al., Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Beneficial microbes, 2017. 8(3): p. 421-432.
78
66. Li, C., et al., Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. Journal of agricultural and food chemistry, 2014. 62(49): p. 11884-11891.
67. Chen, P., et al., Oral administration of Lactobacillus rhamnosus CCFM0528 improves glucose tolerance and cytokine secretion in high-fat-fed, streptozotocin-induced type 2 diabetic mice. Journal of functional foods, 2014. 10: p. 318-326.
68. Regard, J.B., et al., Probing cell type–specific functions of G i in vivo identifies GPCR regulators of insulin secretion. The Journal of clinical investigation, 2007. 117(12): p. 4034-4043.
69. Ahren, B., Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nature reviews Drug discovery, 2009. 8(5): p. 369.
70. Leonard, J.N. and Y. Hakak, Gpr43 and modulators thereof for the treatment of metabolic-related disorders. 2010, Google Patents.
71. Layden, B.T., et al., Regulation of pancreatic islet gene expression in mouse islets by pregnancy. Journal of Endocrinology, 2010. 207(3): p. 265-279.
72. Ulven, T., Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Frontiers in endocrinology, 2012. 3: p. 111.
73. McNelis, J.C., et al., GPR43 potentiates beta cell function in obesity. Diabetes, 2015: p. db141938.
74. Mariño, E., et al., Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nature immunology, 2017. 18(5): p. 552.
79
75. Bindels, L.B., E.M. Dewulf, and N.M. Delzenne, GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends in pharmacological sciences, 2013. 34(4): p. 226-232.
76. Wong, V.W.-S., et al., Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Annals of hepatology, 2015. 12(2): p. 256-262.
77. Moayyedi, P., et al., The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut, 2010. 59(3): p. 325-332.
78. Mazloom, Z., A. Yousefinejad, and M.H. Dabbaghmanesh, Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: a clinical trial. Iranian journal of medical sciences, 2013. 38(1): p. 38.
79. Kaur, N., et al., Intestinal dysbiosis in inflammatory bowel disease. Gut microbes, 2011. 2(4): p. 211-216.
80. Grice, E.A. and J.A. Segre, The human microbiome: our second genome. Annual review of genomics and human genetics, 2012. 13: p. 151-170.
81. Leung, D.Y., New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergology international, 2013. 62(2): p. 151-161.
82. Chung, C.S., S. Yamini, and P.R. Trumbo, FDA’s health claim review: whey-protein partially hydrolyzed infant formula and atopic dermatitis. Pediatrics, 2012: p. peds. 2012-0333.
83. Eichenfield, L., Consensus guidelines in diagnosis and treatment of atopic dermatitis. Allergy, 2004. 59: p. 86-92.
80
84. Tollefson, M.M. and A.L. Bruckner, Atopic dermatitis: skin-directed management. Pediatrics, 2014: p. peds. 2014-2812.
85. Kong, H.H., et al., Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome research, 2012.
86. Kaesler, S., et al., Toll-like receptor 2 ligands promote chronic atopic dermatitis through IL-4–mediated suppression of IL-10. Journal of Allergy and Clinical Immunology, 2014. 134(1): p. 92-99. e6.
87. Chakravortty, D., et al., The inhibitory action of butyrate on lipopolysaccharide-induced nitric oxide production in RAW 264.7 murine macrophage cells. Journal of endotoxin research, 2000. 6(3): p. 243-247.
88. Vinolo, M.A., et al., Regulation of inflammation by short chain fatty acids. Nutrients, 2011. 3(10): p. 858-876.
89. Di Domenico, E., et al., Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: a pivotal interplay in the pathogenesis of Atopic Dermatitis. Scientific reports, 2018. 8(1): p. 9573.
90. Navarini, A.A., L.E. French, and G.F. Hofbauer, Interrupting IL-6–receptor signaling improves atopic dermatitis but associates with bacterial superinfection. Journal of Allergy and Clinical Immunology, 2011. 128(5): p. 1128-1130.
91. Fujita, T., et al., A GPR40 agonist GW9508 suppresses CCL5, CCL17, and CXCL10 induction in keratinocytes and attenuates cutaneous immune inflammation. Journal of Investigative Dermatology, 2011. 131(8): p. 1660-1667.
81
92. Wang, Y., et al., Propionic acid and its esterified derivative suppress the growth of methicillin-resistant Staphylococcus aureus USA300. Beneficial microbes, 2014. 5(2): p. 161-168.
93. Hobdy, E. and J. Murren, AN-9 (Titan). Current opinion in investigational drugs (London, England: 2000), 2004. 5(6): p. 628-634.
94. Wang, Y., et al., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Applied microbiology and biotechnology, 2014. 98(1): p. 411-424.
95. Busbee, P.B., M. Nagarkatti, and P.S. Nagarkatti, Natural indoles, indole-3-carbinol (I3C) and 3, 3’-diindolylmethane (DIM), attenuate staphylococcal enterotoxin B-mediated liver injury by downregulating miR-31 expression and promoting caspase-2-mediated apoptosis. PloS one, 2015. 10(2): p. e0118506.
96. Iwamoto, K., et al., Staphylococcus aureus in atopic dermatitis: Strain-specific cell wall proteins and skin immunity. Allergology International, 2019.
97. Cogen, A.L., et al., Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. Journal of Investigative Dermatology, 2010. 130(1): p. 192-200.
98. Yang, A.-J., et al., A Microtube Array Membrane (MTAM) Encapsulated Live Fermenting Staphylococcus epidermidis as a Skin Probiotic Patch against Cutibacterium acnes. International journal of molecular sciences, 2019. 20(1): p. 14.
82
99. Nakatsuji, T., et al., Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Science translational medicine, 2017. 9(378): p. eaah4680.
100. Paller, A.S., et al., The microbiome in patients with atopic dermatitis. Journal of Allergy and Clinical Immunology, 2019. 143(1): p. 26-35.
101. Jin, W., et al., Topical Application of JAK1/JAK2 Inhibitor Momelotinib Exhibits Significant Anti-Inflammatory Responses in DNCB-Induced Atopic Dermatitis Model Mice. International journal of molecular sciences, 2018. 19(12): p. 3973.
102. Maeda, N., et al., Therapeutic application of human leukocyte antigen-G1 improves atopic dermatitis-like skin lesions in mice. International immunopharmacology, 2017. 50: p. 202-207.
103. Kao, M.-S., et al., The mPEG-PCL copolymer for selective fermentation of Staphylococcus lugdunensis against Candida parapsilosis in the human microbiome. Journal of microbial & biochemical technology, 2016. 8(4): p. 259.
104. Chen, Z.-X. and T.R. Breitman, Tributyrin: a prodrug of butyric acid for potential clinical application in differentiation therapy. Cancer Research, 1994. 54(13): p. 3494-3499.
105. Rabizadeh, E., et al., Rapid alteration of c-myc and c-jun expression in leukemic cells induced to differentiate by a butyric acid prodrug. FEBS letters, 1993. 328(3): p. 225-229.
106. Perrine, S.P., et al., Isobutyramide, an orally bioavailable butyrate analogue, stimulates fetal globin gene expression in vitro and in vivo. British journal of haematology, 1994. 88(3): p. 555-561.
83
107. Raafat, D. and H.G. Sahl, Chitosan and its antimicrobial potential–a critical literature survey. Microbial biotechnology, 2009. 2(2): p. 186-201.
108. Larsen, J.M., The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology, 2017. 151(4): p. 363-374.
109. Mombelli, M., et al., Histone deacetylase inhibitors impair antibacterial defenses of macrophages. Journal of Infectious Diseases, 2011. 204(9): p. 1367-1374.
110. Steliou, K., et al., Butyrate histone deacetylase inhibitors. BioResearch open access, 2012. 1(4): p. 192-198.
111. Chriett, S., et al., Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Scientific reports, 2019. 9(1): p. 742.
112. Finnin, M.S., et al., Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 1999. 401(6749): p. 188.
113. Warren, S. and H.F. Root, The pathology of diabetes, with special reference to pancreatic regeneration. The American journal of pathology, 1925. 1(4): p. 415.
114. Gepts, W., Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes, 1965. 14(10): p. 619-633.
115. Junker, K., et al., An autopsy study of the islets of Langerhans in acute‐onset juvenile diabetes mellitus. Acta Pathologica Microbiologica Scandinavica Section A Pathology, 1977. 85(5): p. 699-706.
116. Pipeleers, D. and Z. Ling, Pancreatic beta cells in insulin‐dependent diabetes. Diabetes/metabolism reviews, 1992. 8(3): p. 209-227.
84
117. Kukreja, A. and N.K. Maclaren, Autoimmunity and diabetes. The Journal of Clinical Endocrinology & Metabolism, 1999. 84(12): p. 4371-4378.
118. Eizirik, D.L., S. Sandler, and J.P. Palmer, Repair of pancreatic β-cells: a relevant phenomenon in early IDDM? Diabetes, 1993. 42(10): p. 1383-1391.
119. Goldberg, R.B., Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. The Journal of Clinical Endocrinology & Metabolism, 2009. 94(9): p. 3171-3182.
120. Brugman, S., et al., Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia, 2006. 49(9): p. 2105-2108.
121. Morrison, D.J. and T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut microbes, 2016. 7(3): p. 189-200.
122. den Besten, G., et al., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research, 2013. 54(9): p. 2325-2340.
123. Bhutia, Y.D. and V. Ganapathy, Short, but smart: SCFAs train T cells in the gut to fight autoimmunity in the brain. Immunity, 2015. 43(4): p. 629-631.
124. Soret, R., et al., Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology, 2010. 138(5): p. 1772-1782. e4.
125. Priyadarshini, M., et al., SCFA receptors in pancreatic β cells: novel diabetes targets? Trends in Endocrinology & Metabolism, 2016. 27(9): p. 653-664.
85
126. Sun, M., et al., Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of gastroenterology, 2017. 52(1): p. 1-8.
127. Scheppach, W., Effects of short chain fatty acids on gut morphology and function. Gut, 1994. 35(1 Suppl): p. S35-S38.
128. McNabney, S. and T. Henagan, Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients, 2017. 9(12): p. 1348.
129. Cani, P.D., et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007. 56(7): p. 1761-1772.
130. Lin, H.V., et al., Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PloS one, 2012. 7(4): p. e35240.
131. Gao, Z., et al., Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 2009.
132. Khan, S. and G. Jena, Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat. Chemico-biological interactions, 2014. 213: p. 1-12.
133. Jakobsdottir, G., et al., High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PloS one, 2013. 8(11): p. e80476.
134. Yadav, H., et al., Beneficial metabolic effects of a probiotic via butyrate induced GLP-1 secretion. Journal of biological chemistry, 2013: p. jbc. M113. 452516.
86
135. de Goffau, M.C., et al., Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia, 2014. 57(8): p. 1569-1577.
136. Endesfelder, D., et al., Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production. Microbiome, 2016. 4(1): p. 17.
137. Kluytmans, J., A. Van Belkum, and H. Verbrugh, Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clinical microbiology reviews, 1997. 10(3): p. 505-520.
138. Round, J.L., et al., The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science, 2011: p. 1206095.
139. Furman, B.L., Streptozotocin‐induced diabetic models in mice and rats. Current protocols in pharmacology, 2015. 70(1): p. 5.47. 1-5.47. 20.
140. King, A.J., The use of animal models in diabetes research. British journal of pharmacology, 2012. 166(3): p. 877-894.
141. Somboonwong, J., S. Traisaeng, and S. Saguanrungsirikul, Moderate-intensity exercise training elevates serum and pancreatic zinc levels and pancreatic ZnT8 expression in streptozotocin-induced diabetic rats. Life sciences, 2015. 139: p. 46-51.
142. Akiba, Y., et al., FFA2 activation combined with ulcerogenic COX inhibition induces duodenal mucosal injury via the 5-HT pathway in rats. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2017. 313(2): p. G117-G128.
87
143. Huang, H.-H., et al., Exercise increases insulin content and basal secretion in pancreatic islets in type 1 diabetic mice. Experimental diabetes research, 2011. 2011.
144. Wei, S.-H., Y.-P. Chen, and M.-J. Chen, Selecting probiotics with the abilities of enhancing GLP-1 to mitigate the progression of type 1 diabetes in vitro and in vivo. Journal of Functional Foods, 2015. 18: p. 473-486.
145. Johanningsmeier, S., et al., Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. Journal of food science, 2007. 72(5): p. M166-M172.
146. Seo, B., et al., Evaluation of Leuconostoc mesenteroides YML003 as a probiotic against low‐pathogenic avian influenza (H9N2) virus in chickens. Journal of applied microbiology, 2012. 113(1): p. 163-171.
147. Allameh, S.K., et al., Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). African Journal of Biotechnology, 2012. 11(16): p. 3810-3816.
148. Kekkonen, R.A., et al., Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-γ production. World journal of gastroenterology: WJG, 2008. 14(8): p. 1192.
149. Kim, J.E., et al., Enhancing acid tolerance of Leuconostoc mesenteroides with glutathione. Biotechnology letters, 2012. 34(4): p. 683-687.
150. Fuller, M., et al., The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis. American Journal of Physiology-Endocrinology and Metabolism, 2015. 309(10): p. E840-E851.
88
151. Eleazu, C.O., et al., Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes & Metabolic Disorders, 2013. 12(1): p. 60.
152. Duckworth, W.C., R.G. Bennett, and F.G. Hamel, Insulin degradation: progress and potential. Endocrine reviews, 1998. 19(5): p. 608-624.
153. Jin, C.J., et al., Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH). British Journal of Nutrition, 2015. 114(11): p. 1745-1755.
154. Raso, G.M., et al., Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet. PloS one, 2013. 8(7).
155. Matis, G., et al., Effects of oral butyrate application on insulin signaling in various tissues of chickens. Domestic animal endocrinology, 2015. 50: p. 26-31.
156. Kozakova, H., et al., Colonisation of germ-free mice with probiotic lactobacilli mitigated allergic sensitisation in murine model of birch pollen allergy. Clinical and translational allergy, 2014. 4(2): p. P26.
157. Zarrinpar, A., et al., Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nature communications, 2018. 9(1): p. 1-13.
158. Pingitore, A., et al., Short chain fatty acids stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: Role of free fatty acid receptor 2. Diabetes, Obesity and Metabolism, 2019. 21(2): p. 330-339.
89
159. Pace, B.S., et al., Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood, 2002. 100(13): p. 4640-4648.
160. Matheus, V., et al., Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Experimental Biology and Medicine, 2017. 242(12): p. 1214-1226.
161. Han, J., et al., Extracellular high-mobility group box 1 acts as an innate immune mediator to enhance autoimmune progression and diabetes onset in NOD mice. Diabetes, 2008. 57(8): p. 2118-2127.
162. Zhang, S., et al., HMGB1, an innate alarmin, in the pathogenesis of type 1 diabetes. International journal of clinical and experimental pathology, 2010. 3(1): p. 24.
163. Abdel-Moneim, A., H.H. Bakery, and G. Allam, The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomedicine & Pharmacotherapy, 2018. 101: p. 287-292.
164. Oh, Y.S., et al., Interleukin‐6 treatment induces beta‐cell apoptosis via STAT‐3‐mediated nitric oxide production. Diabetes/metabolism research and reviews, 2011. 27(8): p. 813-819.
165. Guo, Y., et al., Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression. Frontiers in endocrinology, 2018. 9: p. 630.
166. Hansen, A.H., et al., Development and characterization of a fluorescent tracer for the free fatty acid receptor 2 (FFA2/GPR43). Journal of medicinal chemistry, 2017. 60(13): p. 5638-5645.
90
167. Lehuen, A., et al., Immune cell crosstalk in type 1 diabetes. Nature Reviews Immunology, 2010. 10(7): p. 501-513.
168. Shi, G., et al., FFAR2, a candidate target for T1D, induces cell apoptosis through ERK signaling. Journal of molecular endocrinology, 2014: p. JME-14-0065.
指導教授 黃俊銘 莊宗顯(Chun-Ming Huang Tsung-Hsien Chuang) 審核日期 2020-10-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明