博碩士論文 105022605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:34.207.78.157
姓名 阮香江(Nguyen Huong Giang)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 應用Landsat衛星影像探討越南河內都市化所致土地利用改變在都市熱島效應強度之影響
(The impact of land use/ land cover changes on urban heat island intensity based on Landsat imagery for the developing urban at Hanoi, Vietnam)
相關論文
★ 應用經驗模態分解法在福衛五號遙測照像儀之相對輻射校正★ 應用衛星資料及地理資訊系統在印尼BALURAN國家公園野生牛棲息地之測繪
★ 利用MISR衛星資料反演陸地區域氣膠光學厚度和地表反射率★ MTSAT-1R衛星資料在東亞沙塵暴監測及氣膠光學厚度反演之探討
★ 結合衛星與地面觀測氣膠輻射參數在東南亞地區氣膠種類辨識之應用★ 衛星資料在臺灣地區西南氣流降雨估算之應用
★ MODIS衛星資料在亞洲地區氣膠種類辨識之應用★ 結合MODIS與MISR觀測資料在氣膠單次散射反照率反演之應用
★ 應用衛星資料探討大台北地區都市熱島效應之時空分布★ AERONET觀測資料在氣膠種類輻射參數之探討
★ 結合衛星資料與建物資訊解析台北市空間發展與都市熱島效應之鏈結★ 季風輻合效應在台灣地區熱帶氣旋降雨影響之探討
★ 衛星資料探討台南都市發展在熱島效應及區域降雨型態之影響★ 福爾摩沙衛星二號遙測照相儀之在軌相互輻射校正
★ Landsat-7衛 星 資 料 反 演 都 市 大 氣 氣膠光學厚度之研究與應用★ 對數常態分布在氣膠消光係數廓線擬合之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用Landsat衛星影像探討近30年(1986-2015)來河內市地表/地物變化對都市熱島強度(UHI)的影響。主要研究目標包括(i)近30年來(1986-2015)河內市都市發展的地表/地物變化,(ii)近30年來地表/地物變化對歸一化植被指數(NDVI)、歸一化差異建築指數(NDBI)、地表溫度(LST)及都市地區降雨之定量分析。河內市為越南之首都,其為都市化成長最快的大都會之一,並位於紅河三角洲中心的西北部,其緯度介於北緯20°53’至21°23’,經度介於西經105°44’至106°02’。
本研究使用1986、1998及2015年的Landsat衛星影像進行地表/地物分類,而後用ArcGIS隨機選取100個點並轉成KML(Keyhole Markup Language)檔以利在Google Earth中開啟。在本研究中Google Earth當作真實值進行地表/地物分類的準確性評估。除此之外,本研究亦搜集近30年來河內市地面測站的溫度及降雨資料來驗證LST。
研究結果顯示地表/地物分類有相當大的變化,而地表/地物分類在1986、1998及2015年的準確度分別為83%、82%及84%,kappa係數為0.79、0.78及0.8。最後,UHI由LST計算而來,並和地表/地物分類比較。近29年來建物及農業用地面積快速地增加,分別增加282.16平方公里及440.13平方公里。最高的LST由農業用地、建築用地及裸土決定,最低的LST由水體、森林及沙洲類別決定。河內市的LST在近30年間持續增加4.64°C,同時建物及農業用地也在1986至2015年間明顯的增長,該分類的LST變化分別為4.94°C及4.74°C。值得注意的是河內市的NDBI及LST為正相關,而NDVI與LST為負相關。LST藉由四個地面測站的觀測資料進行驗證,有高度的相關性,相關性在1986年、1998年及2015年分別為R^2=0.951、R^2=0.935及R^2=0.939。1948年及2015年的UHI為5.71°C及7.49°C。由地面測站降雨資料,都市區域的UHII及降雨為正相關,可推測都市地區降雨增加的趨勢可能是來自於都市熱島效應。人工鋪面(ISA)在都市地區的溫度比郊區高,且兩者於UHII為正相關。
摘要(英) The impact of land use/ land cover (LULC) changes on urban heat island intensity (UHII), principally caused from urbanization, is investigated with Landsat imagery at Hanoi megacity during the past three decades (1986-2015). For the objective, the primary examinations include (i) the LULC changes caused by urban development in Hanoi during the past three decades (1986 – 2015); (ii) the quantitative analysis of the LULC change impact on Normalized Difference Vegetation Index (NDVI), The Normalized Difference Built-Up Index (NDBI), Land Surface Temperature (LST) and regional precipitation focus on urban growth during past three decades. Hanoi is capital and one of the growing metropolis with the most rapid urbanization speed in Vietnam. It is located in the Northwest of the center of the Red river Delta with coordinates Latitude from 20o 53’ N to 21o 23’ N and Longitude 105o 44’ W and 106o 02’ W.
For this purpose, multi-temporal Landsat images for 1986, 1998, and 2015 were acquired. After I built up LULC classification in 1986, 1998 and 2015, generating a set of random 100 points was done in ArcGIS Map and converting random points to Keyhole Markup Language (KML) in order to open in Google Earth. Each random point’s value verified from Google Earth for accuracy assessment. Google Earth model was used to measure of how many ground truth pixels are correctly classified to validate LULC results. Beside that data ground station about temperature and rainfall also are collected in Hanoi City under period study to validate for LST.
The results of the study showed that LULC in the study area changed significantly with overall classification accuracy of 1986, 1998 and 2015 were 83%, 82% and 84%, with kappa coefficient of 0.79, 0.78 and 0.8, respectively. Finally, UHI effect is determined and the LST values are compared with LULC classes. During 29-year time interval, it was observed that the building area and agricultural land were increased significantly about 282.16 km2 and 440.13 km2, respectively. Maximum LST values were detected for agricultural land, building area, and bare ground, while minimum LST values were detected for water, forest and sandbars classes. The LST is continuously increasing with 4.64 oC in study area over the period under study. Beside that the LST value increases are relatively building and agriculture classes also significantly rose from 1986 to 2015, with the values of 4.94 °C, and 4.74°C, respectively. It was noticed that a positive relationship exists between NDBI and the land surface temperature. On the other side, a negative relationship exists between NDVI and the land surface temperature in Hanoi city. The LST validity of the study results were assessed using real data from four ground stations and the high correlations with R2=0.951, R2=0.935 and R2=0.939 are demonstrated in 1986, 1998 and 2015, respectively. The UHI intensity was computed as 5.71 oC for 1986 and 7.49 oC for 2015. Association the station measurements with UHII, the raising trend in the urban precipitation might be caused by UHI effect, and has positive trend between UHII and fraction rainfall in the urban area. Imperious surface temperature (ISA) value in urban area always higher than rural area and both of them have positive tendency with UHII.
關鍵字(中) ★ 都市化
★ 地表/地物變化
★ Landsat衛星影像
★ 歸一化植被指數
★ 建築指數
★ 都市熱島強度
關鍵字(英) ★ Urbanization
★ land use/land cove change
★ Landsat imagery
★ Normalized Difference Vegetation Index
★ Land Surface Temperature
★ urban heat island intensity.
論文目次 中 文 摘 要 ……………………………………………………………………...………..…..i
ABSTRACT…………………………………………………………………………………..ii
ACKNOWLEDGEMENTS……………………………………………………………….....v
TABLE OF CONTENTS…………………………………………………………………...ix
LIST OF FIGURE………………………………………………………………………….xii
LIST OF TABLES…………………………………………………………………………viii
LIST OF ACRONYMS……………………………………………………………………xiv
1. INTRODUCTION 1
1.1. Background 1
1.2. Problem Statement and Research Justification 4
1.3. Research Questions 4
1.4. Research Potential and Limitation 5
1.5. The specific objectives of this study are: 5
2. BACKGROUND INFORMATION AND STUDY AREA 6
2.1. General Information of the Hanoi 6
2.2. The Study Area 6
2.2.1. Geographic Location 6
2.2.2. Rainfall and Temperature in Hanoi in study area 7
2.2.3. Urbanization in Hanoi 9
3. LITERATURE REVIEW 11
3.1. Principle of land use/ land cover (LULC) 11
3.1.1. Definitions of land use/land cover 11
3.1.2. Land use/land cover classification system 12
3.1.3. The land use/ land cover change (LULC) 14
3.2. Principle of land surface temperature 14
3.2.1. The concept and the role of land surface temperature 14
3.2.2. The situation of brightness temperature in research area 15
3.2.3. The causes of increased land surface temperature 15
3.3. UHI (Urban Heat Island) in literature 15
3.4. The correlation between Rainfall and Temperature 17
3.5. Geographic information system (GIS) 18
3.5.1. Definition: 18
3.5.2. Basic elements of GIS 18
3.5.3. The Functions of GIS 19
3.5.4. ArcGIS software 20
3.6. Remote Sensing (RS) 20
3.6.1. Definition 20
3.6.2. Principle of Operation of Remote sensing 21
3.7. The Landsat program 22
3.7.1. Landsat -5 (TM) 22
3.7.2. The Landsat 8 (OLI/TIRS) 23
3.8. ENVI software 24
4. MATERIALS AND METHODS 25
4.1. Materials 25
4.2. Data Set Collection 26
4.2.1. Satellite Data Acquisitions 26
4.3. Methods for study 28
4.3.1. Method build-up land use /land cover change map in period 1986 -2015 29
4.4. Methods Build-up land surface temperature map in Hanoi 1986-2015 40
4.4.1. Data collection of Landsat image thermal band 41
4.4.2. The pixel values were converted from digital number units to radiance values for Landsat 5 and Landsat 8. 43
4.4.3. Apply Atmospheric Correction 44
4.4.4. The surface-leaving radiance was converted to apparent surface temperature 45
4.4.5. Emissivity Calculation 45
4.5. Imperious surface area (ISA) estimation 47
4.6. Urban Heat Islands Effect 48
5. RESULTS AND ANALYSIS 49
5.1. Evaluation of Training Sample Sets 49
5.2. Classification and Accuracy Assessment Results 52
5.3. Land use/ land cover map from 1986 to 12015 56
5.3.1. Land Use/Land Cover Map in 1986 56
5.4. Land Use/ Land Cover Map in 1998 57
5.4.1. Land Use/ Land Cover Map in 2015 59
5.5. Imperious surface area (ISA) estimation from 1986 to 2015 60
5.6. Land use/ land cover change map in three period from 1986 to 2015 63
5.6.1. Land use/ land cover change detection between 1986 and 1998 65
5.7. Land use /land cover change detection between 1998 and 2015 68
5.7.1. Land use/ land cover change detection between 1986 and 2015 71
5.8. Interpretation of the Land Surface Temperatures Maps and ground –truth validation from meteorological temperature data during 1986-2015 74
5.8.1. LST map and LST validation on four CWB of Hanoi in 1986 75
5.8.2. LST map and LST validation on four CWB of Hanoi in 1998 77
5.8.3. LST map and LST validation on four CWB of Hanoi in 2015 78
5.9. Urban Heats Islands in Hanoi from 1986 to 2015 81
5.9.1. Urban Heat Island Map between 1986 to 2015 82
5.10. The relationship between LST and land use/cover type 83
5.11. The relationship between NDVI, NDBI and LST 84
5.12. UHI Effect on Regional Precipitation Based on Ground Stations (1986-2015) 87
5.13. The relationship between Impervious Surface Area (ISA) and Urban Heat Island Intensity (UHII) 90
6. DISCUSSIONS AND CONCLUSIONS 92
6.1. Discussion 92
6.2. Conclusion 92
REFERENCES 94
APPENDIX 100
參考文獻 Adam, A. H. M., Elhag, A., & Salih, A. (2013). Accuracy assessment of land use & land cover classification (LU/LC), case study of Shomadi area, Renk County, Upper Nile State, South Sudan. Int. J. Sci. Res. Publ, 3, 1-6.
Arias-Castro, E., & Donoho, D. L. (2009). Does median filtering truly preserve edges better than linear filtering? The Annals of Statistics, 37(3), 1172-1206.
Baboo, S. S., & Devi, M. R. (2011). Geometric correction in recent high resolution satellite imagery: a case study in Coimbatore, Tamil Nadu. International Journal of Computer Applications, 14(1), 32-37.
Barsi, J. A., Schott, J. R., Palluconi, F. D., & Hook, S. J. (2005). Validation of a web-based atmospheric correction tool for single thermal band instruments. Paper presented at the Earth Observing Systems X.
Butler, K. (2013). ArcGIS Resources.
Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing: Guilford Press.
Chun, B., & Guldmann, J.-M. (2014). Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landscape and urban planning, 125, 76-88.
Cong, R.-G., & Brady, M. (2012). The interdependence between rainfall and temperature: copula analyses. The Scientific World Journal, 2012.
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of environment, 37(1), 35-46.
Doan, Q.-V., Kusaka, H., & Ho, Q.-B. (2016). Impact of future urbanization on temperature and thermal comfort index in a developing tropical city: Ho Chi Minh City. Urban Climate, 17, 20-31.
Doan, Q. V., & Kusaka, H. (2016). Numerical study on regional climate change due to the rapid urbanization of greater Ho Chi Minh City′s metropolitan area over the past 20 years. International Journal of Climatology, 36(10), 3633-3650.
Eastman, J. (1995). IDRISI for Windows, User′s Guide Version 1.0, Clark University, Worcester, MA. Google Scholar.
Effat, H. A., Taha, L. G.-E., & Mansour, K. F. (2014). Change Detection of Land cover and Urban Heat Islands Using Multi-Temporal Landsat Images, Application in Tanta City, Egypt. Open Journal of Remote Sensing and Positioning, 1(2), 1-15.
Ehlers, M., Welch, R., & Ling, Y. (2004). GIS and context based image enhancement. Paper presented at the Proceedings of the XXth International Congress of ISPRS, Istanbul, Turkey.
Ellis, E., & Pontius, R. (2007). Land-use and land-cover change. Encyclopedia of earth, 1-4.
Feizizadeh, B., & Blaschke, T. (2013). Examining urban heat island relations to land use and air pollution: Multiple endmember spectral mixture analysis for thermal remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1749-1756.
Gartland, L. M. (2012). Heat islands: understanding and mitigating heat in urban areas: Routledge.
Grimmond, S. U. E. (2007). Urbanization and global environmental change: local effects of urban warming. The Geographical Journal, 173(1), 83-88.
Higuchi, H., Saito, M., Iwahashi, T., & Usui, S. (2004). Network based high accuracy realtime GPS positioning for GCP correction of high resolution satellite imagery. Paper presented at the Geoscience and Remote Sensing Symposium, 2004. IGARSS′04. Proceedings. 2004 IEEE International.
Huynh, N. T., & Uhlenwinkel, A. (2014). Europe 2050–2100: Imagining New Lifeways/Lifestyles A World After Climate Change and Culture-Shift (pp. 141-191): Springer.
Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of environment, 114(3), 504-513.
Jensen, J. R., & Lulla, K. (1987). Introductory digital image processing: a remote sensing perspective.
Kikegawa, Y., Genchi, Y., Yoshikado, H., & Kondo, H. (2003). Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings′ energy-demands. Applied Energy, 76(4), 449-466.
Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., . . . Folke, C. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global environmental change, 11(4), 261-269.
Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., . . . Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of environment, 131, 14-37.
Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation: John Wiley & Sons.
Ma, Y., Kuang, Y., & Huang, N. (2010). Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery. International Journal of Applied Earth Observation and Geoinformation, 12(2), 110-118.
Mallick, J., Rahman, A., & Singh, C. K. (2013). Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Advances in Space Research, 52(4), 639-655.
McCarville, D., Buenemann, M., Bleiweiss, M., & Barsi, J. (2011). Atmospheric correction of Landsat thermal infrared data: A calculator based on North American Regional Reanalysis (NARR) data. Paper presented at the Proceedings of the American Society for Photogrammetry and Remote Sensing Conference, Milwaukee, WI, USA.
Meineke, E. K., Dunn, R. R., & Frank, S. D. (2014). Early pest development and loss of biological control are associated with urban warming. Biology letters, 10(11), 20140586.
Myint, S. W., Wentz, E. A., Brazel, A. J., & Quattrochi, D. A. (2013). The impact of distinct anthropogenic and vegetation features on urban warming. Landscape ecology, 28(5), 959-978.
Nichol, J. E., & To, P. H. (2012). Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 74, 153-162.
Nikolli, P. (2010). Land cover classification in Albania: na.
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
Orloff, J. Introduction to Statistics Maximum Likelihood Estimates Class 10, 18.05 Jeremy Orloff and Jonathan Bloom.
Perera, K., Herath, S., & Tateishi, R. (2014). Assessing land use of lower Mekong basin using multi-temporal MODIS imagery. Paper presented at the Proceedings of the 57th Autumn Conference of the Remote Sensing Society of Japan (RSSJ 2014).
Plocoste, T., Jacoby-Koaly, S., Molinie, J., & Petit, R. (2014). Evidence of the effect of an urban heat island on air quality near a landfill. Urban Climate, 10, 745-757.
Pouncey, R., Swanson, K., & Hart, K. (1999). ERDAS field Guide Fifth Edition, Revised and Expanded, ERDAS Field Guide? Copyright, ERDASR Inc. All rights reserved.
Quattrochi, D. A., & Luvall, J. C. (1999). Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications. Landscape ecology, 14(6), 577-598.
Roth, M. (2007). Review of urban climate research in (sub) tropical regions. International Journal of Climatology, 27(14), 1859-1873.
Sobrino, J., Raissouni, N., & Li, Z.-L. (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of environment, 75(2), 256-266.
Sobrino, J. A., Jimenez-Munoz, J. C., Soria, G., Romaguera, M., Guanter, L., Moreno, J., . . . Martinez, P. (2008). Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 316-327.
Sokal, R. R. (1974). Classification: purposes, principles, progress, prospects. Science, 185(4157), 1115-1123.
Swain, P., Robertson, T., & Wacker, A. (1971). Comparison of the divergence and B-distance in feature selection. LARS Information Note, 20871, 47906-41399.
THI VAN, T., & DUONG XUAN BAO, H. (2010). Study of the impact of urban development on surface temperature using remote sensing in Ho Chi Minh City, Southern Vietnam. Geographical Research, 48(1), 86-96.
Tilahun, A., & Teferie, B. (2015). Accuracy assessment of land use land cover classification using Google Earth. Am. J. Environ. Prot, 4, 193-198.
Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119-132.
USGS, 2013. http://landsat.usgs.gov/descriptions_for_the_levels_of_processing
VGP, 2015. Construction of Hanoi Capital Region from 2015 to 2020 in the future. http://vanban.chinhphu.vn/portal/page/portal/chinhphu/
Van, T., & Bao, H. (2006). Application of thermal remote sensing on investigating feature of urban surface temperature with distribution of land cover types in Hochiminh City. Science & Technology Development, Environment, 9, 70-74.
Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 335-344.
Wong, N. H., & Yu, C. (2005). Study of green areas and urban heat island in a tropical city. Habitat international, 29(3), 547-558.
Wu, C., & Murray, A. T. (2003). Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of environment, 84(4), 493-505.
Xue, L. (2010). Application of IDL and ENVI Redevelopment in Hyperspectral Image Preprocessing. Paper presented at the International Conference on Computer and Computing Technologies in Agriculture.
Yang, W., Mersey, J., & Bonnycastle, A. (2006). Introduction to ArcGIS: Geography Department, University of Guelph.
Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of environment, 106(3), 375-386.
指導教授 林唐煌(Prof. Tang- Huang Lin) 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明