### 博碩士論文 105221004 詳細資訊

 以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數：10 、訪客IP：35.175.179.52
 姓名 陳穎融(Ying-jung Chen)  查詢紙本館藏 畢業系所 數學系 論文名稱 (On similarity problem of integral matrices) 檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]本電子論文使用權限為同意立即開放。已達開放權限電子全文僅授權使用者為學術研究之目的，進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定，切勿任意重製、散佈、改作、轉貼、播送，以免觸法。 摘要(中) 在這篇論文中，我們會先介紹矩陣的canonical form，並利用它來解決2-by-2整數矩陣的相似問題。除了canonical forms之外，我們也會找出generators of the stabilizers of the canonical forms，目的是為了解決3-by-3整數矩陣的相似問題。在應用方面，相似問題能幫助我們算出ideal class number of a quadratic algebra over rational number field Q。最後，在論文中也提供了計算canonical form、判斷矩陣是否相似以及算出判斷矩陣是否相似以及算出ideal classes numbers of quadratic Z-orders的程式碼。 摘要(英) In this thesis, we first introduce the canonical forms and solve the similarity problem of the case of 2-by-2 integral matrices. One direct application is to compute the ideal class number of a quadratic algebra over Q. We also determine the generators of the stabilizers of the canonical forms for 2-by-2 integral matrices, which enables us to solve the similarity problem of 3-by-3 integral matrices with reducible characteristic polynomials. Furthermore, we provide the codes(using Sagemath) for computing the canonical form of a given matrix, determining whether two given matrices are similar or not, and computing the ideal classes numbers of quadratic Z-orders. 關鍵字(中) ★ similarity problem 關鍵字(英) 論文目次 Contents Introduction 1 Chapter I. Preliminaries 5 1. Smith Normal forms over Euclidean domain 5 2. Rational canonical forms 5 3. Block triangular forms over principal ideal domain 6 Chapter II. Similarity of 2-by-2 integral matrices 9 1. Case I 9 2. Case II 11 3. Case III 13 4. Ideal classes of quadratic orders 19 5. Algorithm 22 Chapter III. Similarity of 3-by-3 integral matrices 31 1. Case I 31 2. Case II 33 3. Algorithm 35 Chapter A. Ideal class numbers of quadratic number eld 41 Bibliography 45 參考文獻 [1] Appelgate, H. & Onishi, H., The Similarity Problem for 33 Integer Matrices, Linear algebra and its application 42 (1982) 159-174. [2] Appelgate, H. & Onishi, H., Continued fractions and the conjugacy problem in SL2(Z), Communications in Algebra 9:11, 1121-1130 (1981). [3] Cohen, H., A course in computational algebraic number theory, Graduate Texts in Mathematics 138, Springer-Verlag Berlin Heidelberg, 1993. [4] Dummit, D. S. & Foote, R. M., Abstract algebra, John Wiley & Sons, 2004. [5] Hardy, G. H. & Wright, E. M., An introduction to the theory of numbers, Oxford University Press, New York, 2008. [6] Ireland, K. & Rosen, M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1990. [7] Jacobson, N., Basic algebra I, Dover Books in Mathematics, Courier Corporation, 2009. [8] Newman, M., Integral matrices, Pure and applied mathematics, Volume 45, New York and London, 1972. [9] Serre, J. P., A course in arithmetic, Springer, 1973. 指導教授 魏福村 陳燕美 審核日期 2018-12-17 推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu 網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare