博碩士論文 105221008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:54.226.102.115
姓名 林淑惠(Shu-Hui Lin)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Genetic Algorithms for Optimization Problems with Their Applications)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2019-8-31以後開放)
摘要(中) 近年來,人工智慧的議題逐漸受到重視,越來越多人以此求解最佳化的問題。而基因演算法為人工智慧的分支之一,它是以達爾文進化論為理念發展出來的:仿照天擇,利用族群的整體資訊,將適應力高的基因遺傳給下一代,並經由突變避免遺漏掉更好的基因。換成最佳化的問題來討論,遺傳優良基因可視為快速收斂至最佳解,而突變則是避免掉入局部最佳解。也因此,基因演算法對於找出全域最佳解的效率相當高,值得探討研究。

本篇論文將介紹基因演算法的緣由、步驟程序及應用。其中,我們需要搭配打靶法、最小平方法來解決最佳化問題。特別是軌道最佳化,我們可以了解到如何藉此找出適當的初始值,並與兩篇論文的結果做比較:一篇是於西元2017年由王璿豪先生等人共同著作的期刊論文``A full-space quasi Lagrange-Newton-Krylov algorithm for trajectory optimization problems" (簡稱為WLHH) ,另外一篇論文於西元2018年由連政杰先生所著的``A parallel full-space Lagrange-Newton method for
low-thrust orbit transfer trajectory optimization problems" (簡稱為CCL) 。而後我們欲證明初始值在可行解區域上或非可行解區域上的效益是否有差別,相關數據結果將會於最後呈現。
摘要(英) More recently, people put more and more emphasis on the artificial intelligence (AI) issue and solve optimization problems by it. However, genetic algorithms (GAs) is one branch of AI. It is based on the theory of evolution from Darwin: imitating the natural selection and using the total information of groups, the chromosomes with high adaptability are inherited to the new generation. In addition to this, the chromosomes may be mutated due to avoid missing the greater genes. In other words, inheritance is considered as converging to the optimal solution rapidly and mutation is preventing from falling into the local extrema. Consequently, the efficiency of finding the global extrema is excellent for GAs. It is worth to explore and research.

We will introduce the summary and the applications of GAs in this paper. Besides, we need to solve the optimization problem by shooting method and the least square method. Especially trajectory optimization, we can understand how to find the suitable initial guess, and compare the result with two papers: one is a journal paper ``A full-space quasi Lagrange-Newton-Krylov algorithm for trajectory optimization problems" written by Hsuan-Hao Wang et al. in 2017 (called WLHH), another is ``A parallel full-space Lagrange-Newton method for low-thrust orbit transfer trajectory optimization problems" written by Cheng-Chieh Lien in 2018 (called CCL) . If the initial guess is one of the feasible solutions, is the effect whether better or not? The numerical results will be presented at the end.
關鍵字(中) ★ 基因演算法
★ 打靶法
★ 非線性最小平方
★ 軌道最佳化
關鍵字(英) ★ Genetic Algorithms
★ Shooting method
★ Nonlinear Least Squares
★ Trajectory Optimization
★ Full-space quasi Lagrange-Newton-Krylov algorithm
論文目次 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 A framework of optimization problems . . . . . . . . . . . . . . . . . . . . 3

2.1 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Parameters study of genetic algorithms . . . . . . . . . . . . . . . . . . . . 8

3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Unconstrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Nonlinear least squares . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Using shooting method to boundary value problem . . . . . . . . . 18

3.2 Constrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Full-space quasi Lagrange-Newton-Krylov algorithm . . . . . . . . 26

3.2.2 Trajectory optimization . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
參考文獻 [1] D.R. Jones. Direct global optimization algorithm direct global optimization algorithm. In Encyclopedia of optimization, pages 431–440. Springer, 2001.

[2] M.S. Arumugam, M.V.C. Rao, and A. Chandramohan. A new and improved version
of particle swarm optimization algorithm with global-local best parameters. Knowl
Inform Syst, 16:331–357, 2008.

[3] K.C. Goh, M.G. Safonov, and G.P. Papavassilopoulos. A global optimization approach for the BMI problem. In Decis Contr, volume 3, pages 2009–2014, December
1994.

[4] Y.T. Kao and E. Zahara. A hybrid genetic algorithm and particle swarm optimization
for multimodal functions. Appl. Soft Comput., 8:849–857, 2008.

[5] R. Chelouah and P. Siarry. Genetic and Nelder–Mead algorithms hybridized for a
more accurate global optimization of continuous multiminima functions. Eur. J.
Oper. Res., 148:335–348, 2003.

[6] M. Kelly. An introduction to trajectory optimization: How to do your own direct
collocation. SIAM Rev., 59:849–904, 2017.

[7] Y.-C. Ma. Energy aware flow scheduling for data center network using genetic algorithms. Master’s thesis, National Chiao Tung University, 2012.

[8] F.-T. Hwang. Aeroacoustic antenna modeling for the near field. Master’s thesis,
University of Minnesota, 1996.

[9] F.W. Glover and G.A. Kochenberger. Handbook of Metaheuristics. Springer Science
& Business Media, 2006.

[10] A. Homaifar, C.-X. Qi, and S.-H. Lai. Constrained optimization via genetic algorithms. Simulation, 62:242–253, 1994.

[11] O. Yeniay. Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl., 10:45–56, 2005.
[12] F.-T. Lin. Evolutionary computation Part I: Three theoretic models of evolutionary
algorithms. Journal of Taiwan Intelligent Technologies and Applied Statistics, 3:1–28,
2005.

[13] F.-T. Lin. Evolutionary computation Part II: Genetic algorithms and their three
applications. Journal of Taiwan Intelligent Technologies and Applied Statistics, 3:29–
56, 2005.

[14] L.-C. Chang. Optimal planning of integrated groundwater management. Master’s
thesis, National Chiao Tung University, 2004.

[15] A. Chipperfield, P. Fleming, H. Pohlheim, and C. Fonseca. Genetic algorithm toolbox
for use with MATLAB. Technical report, 1994.

[16] T. Strutz. Data Fitting and Uncertainty: A Practical Introduction to Weighted Least
Squares and Beyond. Vieweg and Teubner,Wiesbaden, 2010.

[17] C.T. Kelley. Iterative Methods for Optimization. SIAM,Philadelphia, 1999.

[18] P.J.G. Teunissen. Nonlinear least squares. Manuscripta geodaetica, 15:137–150, 1990.

[19] B.A. Boukamp. A nonlinear least squares fit procedure for analysis of immittance
data of electrochemical systems. Solid State Ionics, 20:31–44, 1986.

[20] J.E. Dennis, D.M. Gay Jr, and R.E. Walsh. An adaptive nonlinear least-squares
algorithm. ACM Trans. Math. Softw., 7:348–368, 1981.

[21] S. Timothy. Numerical Analysis, 2nd Edition. Pearson, Boston, 2011.

[22] S.N. Ha. A nonlinear shooting method for two-point boundary value problems. Com-
put. Math. Appl., 42:1411–1420, 2001.

[23] H.-H. Wang, Y.-S. Lo, F.-T. Hwang, and F.-N. Hwang. A full-space quasi Lagrange-
Newton-Krylov algorithm for trajectory optimization problems. Electron. Trans.
Numer. Anal., 2017.

[24] C.-C. Lien. A parallel full-space Lagrange-Newton method for low-thrust orbit transfer trajectory optimization problems. Master’s thesis, National Central University,
2018.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明