博碩士論文 105221601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.222.147.4
姓名 盧斯非(Ivan Luthfi Ihwani)  查詢紙本館藏   畢業系所 數學系
論文名稱
(A Multiscale Finite Element Method with Adaptive Bubble Function Enrichment for the Helmholtz Equation)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 亥姆霍茲方程(Helmholtz equation)是描述許多物理現象(如散射和波傳播)的數學 模型之一,使用數值方法去求解亥姆霍茲方程存在著一些困難。首先,缺乏魯棒 性被稱為污染效應。其次,當在無邊界域的外域中定義問題時,很難找到一個有 效的迭代求解器,隨著波數的增加時,這些迭代求解器可以收斂並且得到少量的 迭代次數。本文提出了一個多尺度有限元方法(MsFEM)的新框架作為這類問題 的迭代求解器。該方法通過所謂的自適應氣泡函數來改進,使得該方法被稱為具 有自適應氣泡函數富集的多尺度有限元方法(MsFEM bub)。各種波數的數值實 驗中表現出該方法的穩健性和效率。
摘要(英) The Helmholtz equation is one of mathematical model to describe many physical phenomena, such as scattering and wave propagation. There are difficulties of solving Helmholtz equation numerically. First, the lack of robustness which is called pollution effect. Second, when the problem defined in an unbounded domain exterior domain, it is hard to find an efficient iterative solver that converge with a few number of iterations as the wavenumber increasing. This thesis presents a new framework of multiscale finite element method (MsFEM) as an iterative solver for such problems. The method is improved by so-called adaptive bubble function such that the method is called multiscale finite element method with adaptive bubble function enrichment (MsFEM bub). Numerical experiments for various wavenumbers indicate the robustness and the efficiency of the method.
關鍵字(中) ★ Helmholtz
★ pollution effect
★ MsFEM
★ bubble function
★ MsFEM bub
關鍵字(英) ★ Helmholtz
★ pollution effect
★ MsFEM
★ bubble function
★ MsFEM bub
論文目次 Contents
Tables......................................... vi Figures......................................... vii Nomenclature..................................... x
1 Introduction ................................... 1
2 Modelofthe2DHelmholtzproblem ...................... 4
2.1 Mathematicalmodel ............................ 4 2.2 Galerkinfiniteelementmethod....................... 4 2.3 Pollutioneffect ............................... 7 2.4 Stabilizedfiniteelementmethod ...................... 7
3 Reviewofsomeiterativesolvers......................... 15 3.1 Krylovsubspacemethods.......................... 15 3.2 Algebraicmultigrid(AMG) ........................ 22
4 The multiscale finite element method with adaptive bubble function enrich- ment........................................ 25
4.1 Motivation.................................. 25 4.2 MsFEMbubandsomenotations...................... 25 4.3 Coarsegridproblem ............................ 27 4.4 Thelocalproblem.............................. 28 4.5 Fundamentalidea.............................. 30 4.6 Smoothingstep ............................... 31
4.7 MsFEMbubalgorithm ........................... 31 5 Numericalexperimentanddiscussion ..................... 33 5.1 Testcases .................................. 33 5.2 Convergencestudies ............................ 37 5.3 Efficiencystudies .............................. 50 5.4 Comparisonwithothermethods ...................... 61 6 Conclusion .................................... 63 Bibliography ..................................... 64 AppendixA:ThederivationofHelmholtzequation . . . . . . . . . . . . . . . . . 66
Appendix B: Review of the iteratively adaptive multiscale finite element method (i-ApMsFEM)................................... 67
AppendixC:Additionalcomparisonwithothermethods . . . . . . . . . . . . . . 73
參考文獻 Bibliography
[1] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math., 9:17–29, 1951.
[2] I. Babuˇska, F. Ihlenburg, E. T. Paik, and S. A. Sauter. A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollu- tion. Comput. Methods Appl. Mech. Engrg., 128:325–359, 1995.
[3] R. Barrett, M. Berry, and T. F. Chan. Templates for The Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 1994.
[4] A. Bayliss, C.I. Goldstein, and E. Turkel. The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics. Comp. and Maths. with Appls., 11:655–665, 1985.
[5] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic Multigrid (AMG) for Sparse Matrix Equations, chapter Sparsity and Its Application, pages 257–284. Cambridge University Press, Cambridge, 1984.
[6] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal., 20:345–357, 1983.
[7] H. C. Elman, O. G. Ernst, and D. P. O’leary. A multigrid method enhanced by krylov subspace iteration for discrete Helmholtz equations. SIAM J. Sci. Comput., 23:1291–1315, 2001.
[8] B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Commun. Pure Appl. Math., 64:6, 2011.
[9] Y. A. Erlangga, C. Vuik, and C. W. Oosterlee. On a class of preconditioners for solving the Helmholtz equation. Appl. Numer. Math., 50:409–425, 2004.
[10] O. G. Ernst and M. J. Gander. Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods, pages 325–363. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
[11] R. D. Falgout. An introduction to algebraic multigrid. J. Comp. in Sci. and Eng., 8:24–33, November 2006.
[12] L. P. Franca, C. Farhat, A. P. Macedo, and M. Lesoinne. Residual-free bubbles for the Helmholtz equation. Int. J. Numer. Meth. Eng., 40:4003–4009, 1997.
[13] L. P. Franca and A. P. Macedo. A two-level finite element method and its application to the Helmholtz equation. Int. J. Numer. Meth. Eng., 43:23–32, 1998.
[14] C.I. Goldstein. A finite element method for solving Helmholtz type equations in waveguides and other unbounded domains. Math. Comput., 39:303–324, 1982.
[15] I. Harari and T. J. R. Hughes. Finite element methods for the Helmholtz equation in an exterior domain: model problems. Comp. Methods Appl. Mech. Eng., 87:59–96, 1991.
[16] T. Y. Hou, F.-N. Hwang, P. Liu, and C.-C. Yao. An iteratively adaptive multi-scale finite element method for elliptic PDEs with rough coefficients. J. Comput. Phys., 336:375–400, 2017.
[17] F.-N. Hwang, Y.-Z. Su, and C.-C. Yao. An iteratively adaptive multiscale finite element method for elliptic interface problems. App. Num. Maths., 127:211–225, 2018.
[18] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering. Springer, New York, 1998.
[19] R.C. Maccamy and S.P. Marin. A finite element method for exterior interface prob- lems. Int. J. Math. and Math. Sci., 3:311–350, 1980.
[20] Y. Notay. An aggregation-based algebraic multigrid method. Electronic Transac- tions on Numerical Analysis, 37:123–146, 2010.
[21] Y.Notay.Aggregation-basedalgebraicmultigridforconvection-diffusionequations. SIAM J. Sci. Comput., 34:A2288–A2316, 2012.
[22] J. W. Ruge and K. Stu ?ben. Algebraic multigrid (AMG), volume 3, chapter Multigrid Methods, pages 73–130. SIAM, Philadelphia, 1987.
[23] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2 edi- tion, 2003.
[24] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856–869, 1986.
[25] K. Stu ?ben. Algebraic multigrid (amg): experiences and comparisons. Appl. Math. Comput., 13:419–45, 1983.
[26] K. Stu ?ben. A review of algebraic multigrid. J. Comput. and App. Math., 128:281– 309, March 2001.
[27] L. L. Thompson and P. M. Pinsky. A Galerkin least squares finite element method for the two-dimensional Helmholtz equation. Int. J. Numer. Meth. Eng., 38:371–397, 1995.
[28] U. Trottentberg, C. W. Oosterlee, and A. Schu ?ller. Multigrid, chapter An Introduc- tion to Algebraic Multigrid, pages 413–532. Academic Press, San Diego, 2001. Appendix A.
[29] H. A. Van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Numer. Linear Algebra Appl., 1:369–386, 1994.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明