博碩士論文 105222001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.117.183.150
姓名 歐陽義詠(Yi-Yong Ou Yang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 高階諧波相位匹配條件的測量
(Measurement of the phase-matching condition of high-order harmonic generation)
相關論文
★ 利用X光光電子能譜儀進行氬原子團簇游離能的研究★ 發展利用對撞光學拍頻脈衝波產生准相位匹配高階諧波
★ X光探測紅外線激發氬原子團簇產生奈米電漿球振盪現象之相關研究★ 在Pt(111)表面上研究雷射輔助光電效應
★ Preliminary Experiment for the Control of Cluster Vibration★ 釔鋇銅氧高溫超導薄膜的成長及診斷
★ 高階諧波產生極紫外光的脈衝時寬量測★ 建造準相位匹配高階諧波產生的拍波脈衝串
★ 相位匹配之極紫外光高階諧波產生★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 超短極紫外線脈衝之單發式波形強度量測★ 利用不同波長脈衝雷射產生高階諧波並最佳化相位匹配條件
★ 經由高強度雷射引發尾場所產生的非熱效 應電子加速★ 雷射電漿中無碰撞激震波的全域與局域量測
★ 極紫外光與近紅外光在電漿中四波混頻的前期實驗★ High-Harmonic Generation beyond the Traditional Phase-Matching Cutoff Energy
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高階諧波是一種從極紫外光延伸至 X 光的高相干性光源,
它是藉由高強度雷射游離氣體原子而產生。高階諧波的轉換效
率與入射光源在介質中作用的相位匹配有關,主要包括四個因
素:中性氣體色散 (neutral gas dispersion)、電漿色散 (plasma
dispersion)、光束幾何相位變化 (geometrical phase shift) 與內
在偶極子相位變化 (intrinsic dipole phase variation)。在低游
離率的情況下,可以透過調整雷射強度游離適當比列的原子,
使電漿色散與中性氣體色散達成平衡,藉此達成相位匹配,然
而為了獲得更高階數的高階諧波,需要提高雷射的強度來游離
氣體,以達到更高的截止能量,但是此時游離率會過高而無法
達成相位匹配,導致能量轉換效率降低。
本實驗為了尋找解決能量轉換效率問題的方法,我們針對第
27 階高階諧波進行實驗,詳細紀錄高階諧波產生時的雷射狀
態、氣體狀態、兩者產生作用時的游離狀態,以此直接測量出
高階諧波的相位變化,然後使用一道側向雷射控制作用長度,
得到高階諧波與雷射作用距離的關係,最終統整高階諧波產生
時的詳細條件,以此補助在高游離態下高階諧波產生的研究。
摘要(英) High-order harmonic generation (HHG) is a kind of ultrashort coherent EUV/x-ray source. It is produced by ionizing
gas atoms with a high-intensity laser. The conversion efficiency of high-order harmonic generation is determined by
the relative phase between the driving field and the harmonic
field in the medium. It is determined with four factors: neutral gas dispersion, plasma dispersion, geometrical phase shift,
and intrinsic dipole phase variation. In low ionization condition, phase-matching condition can be achieved by balancing
the negative plasma dispersion and the positive neutral gas
dispersion.
In this thesis we focus on the generation of the 27th order
harmonic. We made a tomographic measurement of its growing process, and characterized its complete phase-matching
condition. We found that the phase-matching condition is
nonuniforn in both longitudinal and transverse directions, and
the major contribution of the 27th harmonic yield comes from
the short-trajectory emission from the central part of the driving pulse. These techniques could be beneficial for pursuing
efficient high-harmonic generation in shorter wavelengths.
關鍵字(中) ★ 高階諧波
★ 相位匹配
關鍵字(英) ★ high-order harmonic generation
論文目次 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
1 實驗原理1
1.1 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 典型高階諧波光譜. . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 三步驟模型. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 相位匹配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.1 中性氣體色散(neutral gas dispersion) . . . . . . . . 7
1.4.2 電漿色散(plasma dispersion) . . . . . . . . . . . . . 8
1.4.3 幾何相位變化(geometrical phase shift) . . . . . . . 9
1.4.4 內在偶極子相位變化(intrinsic dipole phase variation) 10
1.4.5 相位匹配條件的總和. . . . . . . . . . . . . . . . . . 12
1.5 Selective-Zoning mechanism . . . . . . . . . . . . . . . . . 12
2 實驗架設與參數15
2.1 實驗架設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 診斷系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 傳繼成像系統(relay-imaging system) . . . . . . . . . 18
2.2.2 Wavefront sensor (PHASICS-SID4) . . . . . . . . . 18
2.2.3 平場光譜儀(Flat-field spectrometer) . . . . . . . . . 19
2.3 雷射參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 實驗結果21
3.1 第27 階高階諧波的相位匹配條件. . . . . . . . . . . . . . . 21
3.2 第27 階高階諧波訊號的累積. . . . . . . . . . . . . . . . . 26
3.3 HHG 生成過程的模擬. . . . . . . . . . . . . . . . . . . . . 28
4 總結37
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
參考文獻 [1] C. Winterfeldt, C. Spielmann, and G. Gerber, “Colloquium: Optimal control of high-harmonic generation,” Rev. Mod. Phys. 80,
117–140 (2008).
http://link.aps.org/doi/10.1103/RevModPhys.80.117
[2] T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers
of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[3] P. B. Corkum and F. Krausz, “Attosecond science,” Nature Physics
3, 381–387 (2007).
[4] H. Kapteyn, O. Cohen, I. Christov, and M. Murnane, “Harnessing
Attosecond Science in the Quest for Coherent X-rays,” Science
317, 775–778 (2007).
https://science.sciencemag.org/content/317/5839/775
[5] A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A.
McIntyre, K. Boyer, and C. K. Rhodes, “Studies of multiphoton
production of vacuum-ultraviolet radiation in the rare gases,” J.

Opt. Soc. Am. B 4, 595–601 (1987).
http://josab.osa.org/abstract.cfm?URI=josab-4-4-595
[6] A. L'Huillier and P. Balcou, “High-order harmonic generation in
rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–
777 (1993).
[7] Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C.
Kapteyn, “Generation of coherent soft x rays at 2.7 nm using high
harmonics,” Phys. Rev. Lett. 79, 2967–2970 (1997).
[8] C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch,
M. Schnurer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz,
“Generation of coherent x-rays in the water window using 5-
femtosecond laser pulses,” Science 278, 661–664 (1997).
[9] P. B. Corkum, “Plasma perspective on strong field multiphoton
ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
http://link.aps.org/doi/10.1103/PhysRevLett.71.1994
[10] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B.
Corkum, “Theory of high-harmonic generation by low-frequency
laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
http://link.aps.org/doi/10.1103/PhysRevA.49.2117

[11] A. Rundquist, C. G. D. III, Z. Chang, C. Herne, S. Backus, M. M.
Murnane, and H. C. Kapteyn, “Phase-Matched Generation of Coherent Soft X-rays,” Science 280, 1412–1415 (1998).
http://www.sciencemag.org/content/280/5368/1412.abstract
[12] C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase Matching of High-Order Harmonics in Hollow Waveguides,” Phys. Rev. Lett. 83, 2187–2190
(1999).
http://link.aps.org/doi/10.1103/PhysRevLett.83.2187
[13] Kazamias, S., Weihe, F., Douillet, D., Valentin, C., Planchon, T.,
Sebban, S., Grillon, G., Augé, F., Hulin, D., and Balcou, Ph.,
“High order harmonic generation optimization with an apertured
laser beam,” Eur. Phys. J. D 21, 353–359 (2002).
https://doi.org/10.1140/epjd/e2002-00193-0
[14] H.-W. Sun, P.-C. Huang, Y.-H. Tzeng, J.-T. Huang, C. D. Lin,
C. Jin, and M.-C. Chen, “Extended phase matching of high harmonic generation by plasma-induced defocusing,” Optica 4, 976–
981 (2017).
[15] C. M. Heyl, J. Güdde, A. L’Huillier, and U. Höfer, “High-order
harmonic generation with µJ laser pulses at high repetition rates,”

J. Phys. B: At. Mol. Opt. Phys. 45, 074 020 (2012).
https://doi.org/10.1088
[16] J. Peatross, S. Voronov, and I. Prokopovich, “Selective zoning of
high harmonic emission using counter-propagating light,” Opt. Express 1, 114–125 (1997).
[17] S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry,
J. Titensor, Q. Wang, and J. Peatross, “Control of Laser HighHarmonic Generation with Counterpropagating Light,” Phys. Rev.
Lett. 87, 133 902 (2001).
[18] X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn,
M. M. Murnane, and O. Cohen, “Quasi-phase-matching and
quantum-path control of high-harmonic generation using counterpropagating light,” Nature Physics 3, 270–275 (2007).
[19] J. B. Madsen, L. A. Hancock, S. L. Voronov, and J. Peatross,
“High-order harmonic generation in crossed laser beams,” J. Opt.
Soc. Am. B 20, 166–170 (2003).
http://josab.osa.org/abstract.cfm?URI=josab-20-1-166
[20] J.-C. Chanteloup, “Multiple-wave lateral shearing interferometry
for wave-front sensing,” Appl. Opt. 44, 1559–1571 (2005).
http://ao.osa.org/abstract.cfm?URI=ao-44-9-1559

[21] T.-S. Hung, C.-H. Yang, J. Wang, S. yuan Chen, J.-Y. Lin, and
H. hsin Chu, “A 110-TW multiple-beam laser system with a 5-
TW wavelength-tunable auxiliary beam for versatile control of laserplasma interaction,” Appl. Phys. B 117, 1189–1200 (2014).
http://link.springer.com/article/10.1007%2Fs00340-014-5943-6
[22] E. A. Gibson, Quasi-Phase Matching of Soft X-ray Light from
High-Order Harmonic Generation using, Ph.D. thesis, University
of Colorado (2004).
[23] C.-H. Yang, S.-C. Kao, J. Wang, and H.-H. Chu, “Synthesis of a
Beat-Wave Pulse Train with Increasing Pulse Separation for QuasiPhase-Matched High-Harmonic Generation,” J. Opt. Soc. Am. B
31, 1793–1800 (2014).
[24] E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. L.
Blanc, F. Salin, and P. Agostini, “Optimizing High Harmonic Generation in Absorbing Gases: Model and Experiment,” Phys. Rev.
Lett 82 (1999).
指導教授 朱旭新(Hsu-Hsin Chu) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明