博碩士論文 105222006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.15.202.214
姓名 吳宣誼(Hsuan-I Wu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 氧化鋅薄膜與奈米柱的螢光光譜
(Photoluminescence spectra of ZnO thin film and nanorod)
相關論文
★ 矽基板上鍺薄膜的拉曼光譜研究★ 不同應力下之石墨烯電特性研究
★ AlGaN/GaN高電子遷移率電晶體異質結構的光學性質與其缺陷討論★ 氧化鎘鋅與氧化鎂鋅之光學性質分析
★ 碳化矽塊材之螢光光譜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文藉由光激螢光光譜(PL spectra)來分析不同退火條件(無退火、600℃退火或700℃退火)的奈米柱氧化鋅樣品與不同鋅氧含量比例(晶格中鋅較多或氧較多)的薄膜氧化鋅樣品之各種特性(諸如結晶品質、激子特性、能階結構、能隙隨溫度變化特性與聲子所造成的螢光特性等等)。
  在低溫的光譜中,各樣品除了在氧化鋅能隙3.36eV波段附近有強又窄的近能隙輻射(Near band-gap emission, NBE)訊號外,低能量波段(約1.8~2.4eV)附近則也出現了寬訊號。
  低能量寬訊號主要由電子在晶格缺陷對應的能階間躍遷所產生的缺陷輻射(Defect related emission, DE)並同時耦合若干個聲子(Phonon replica)所形成。NBE對DE的強度比值可反映出樣品的結晶品質(此比值越大則晶格愈趨理想)。從低溫的光譜中可發現:奈米柱樣品經退火後會比無退火有著更大比值,退火溫度越高比值也更大;而氧含量較高的薄膜樣品則比鋅含量較高的樣品有著更大的比值。
  另外,薄膜的DE出現了由聲子耦合所形成的波浪狀起伏。鋅含量較多之薄膜樣品在3.0eV附近也出現了其他樣品所沒有的寬波浪狀訊號,這是由該樣品中特有的缺陷能階與受子能階所造成。
  從變溫PL光譜中可獲得不同溫度下各氧化鋅樣品的能隙。Manoogian–Wooley所提出的模型指出半導體的能隙隨著溫度上升而紅移的現象主要受熱膨脹與聲子作用這兩個因素影響,其中熱膨脹效應影響得越厲害則在低溫時的紅移程度便越大。經由MW模型擬合此數據,可得知奈米柱樣品的能隙不易受到此效應所影響。
摘要(英) By using photoluminescence spectroscopy (PL), we have studied the properties (Cystal quality, Exciton properties, Energy level, Band gap energy fuction of temperature and the signal caused by the phonon) of the nanorod ZnO whose annealed condition were different (As-grown, Annealed 600℃and 700℃) and the thin film ZnO temperature whose Zn/Oxygen ratio were different(more Zn or O in the crystal).
In the low temperature PL spectra of the all sample, it not only appeared a strong and sharp near band gap emission (NBE) signal around 3.36 eV, but also appeared a wide signal from 1.8 to 2.4 eV caused by the fact of the electron transition in the crystal defect energy level (DE) and meanwhile coulpling several phonon (Phonon replica) at the same time. The intensity ration of NBE to DE could reflect the crystal quality of the sample. From the low temperature PL spectra we found that the ratio of nanorod sample would increases as procedure annealing, and would keep increased as the annealed teprature increased; thin film sample would increases as Zn/Oxygen ratio decreased.
Moreover, the DE of thin film appeared the “wave like” curves which caused by the influence of the phonon. The Zn-rich thin film sample also appeared the “wave like” curves that all the other sample didn’t have: this is caused by the unique defect level and acceptor level existed in that sample.
The value of the bad gap energy of variety temperature could be found from the temperature dependent spectra. Manoogian–Wooley’s (MW) model indicated that the phenomenon of the red shift of the band gap energy of the semiconductor as temperature increased is mainly caused by thermal expansion and phonon-coupling effect. The degree of the red shift in low temperature would be more obvious if the effect of thermal expansion is hard. We finally found that the band gap energy of nanorod ZnO didn’t influence by this effect throughout the fitting of MW’s model.
關鍵字(中) ★ 氧化鋅
★ 螢光
★ 聲子
★ 激子
★ 能隙
★ 缺陷
關鍵字(英) ★ ZnO
★ Photoluminescence
★ Phonon
★ Exciton
★ Band gap
★ Defect
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
一、序論 1
二、基本原理 3
2-1 光激螢光介紹 3
2-2 氧化鋅基本結構性質與其聲子特性介紹 4
2-3 氧化鋅光激螢光訊號簡介 10
2-3.1 典型ZnO之大範圍PL光譜概述 10
2-3.2 Defect related emission 12
2-4 各種PL訊號的背景原理介紹 14
2-4.1 Free exciton的複合 14
2-4.2 Bound exciton的複合 16
2-4.3 Two-electron satellite(TES)的複合 18
2-4.4 Free electron to acceptor level(FA) 19
2-4.4 LO phonon replica 21
2-5 半導體的變溫Band Gap模型 31
2-6 半導體的PL訊號強度對應溫度的關係 33
三、實驗架構與樣品 34
3-1 實驗架構介紹 34
3-2 實驗樣品介紹 36
四、實驗結果與討論 38
4-1 ZnO的低溫廣範圍PL光譜概述與比較 38
4-2 Thin film ZnO的變溫PL光譜比較 43
4-2.1 Thin film ZnO O-rich部分 43
4-2.2 Thin film ZnO Zn-rich部分 52
4-3 Nanorod ZnO的變溫PL光譜比較 64
4-3.1 Nanorod ZnO As-grown 部分 64
4-3.2 Nanorod ZnO Annealled 部分 68
4-4 各ZnO樣品的Band gap隨溫度變化的關係與以三種模型擬合的結果
討論 81
五、結論 88
參考文獻 91
參考文獻 [1] A. F. Kohan et al., “First-principles study of native point defects in ZnO”, Phys. Rev. B vol. 61, no. 22, 15019 (2000)
[2] M. C. Tarun et al. , ” Nitrogen is a deep acceptor in ZnO”, AIP Advances 1, 022105(2011)
[3] M.D. McCluskey, S.J. Jokela, “Defects in ZnO”, J. Appl. Phys. 106 , 071101 (2009)
[4] E.C. Lee et al., ” Compensation mechanism for N acceptors in ZnO”, Phys. Rev. B 64, 085120 (2001)
[5] C. H. Park et al.,” Origin of p-type doping difficulty in ZnO: The impurity perspective”, Phys. Rev. B 66, 073202 (2002)
[6] Y.T. Chuang & J.W. Liou & W.Y. Woon,” Formation of p-type ZnO thin film through co-implantation”, Nanotechnology 28, 035603 (2017)
[7] T. C. Damen et al., ” Raman Effect in Zinc Oxide”, Phys. Rev. B 142, 2 (1966)
[8] J. Serrano et al.,” Pressure dependence of the lattice dynamics of ZnO: An ab initio approach”, Phys. Rev. B 69, 094306 (2004)
[9] A. Janotti et al., “Native point defects in ZnO”, Phys. Rev. B 76, 165202 (2007)
[10] S. L. Shi et al., ” Green Luminescence Band in ZnO: Fine Structures, Electron-Phonon Coupling, and Temperature Effect”, J. Phys. Chem. B 110, 10475 (2006)
[11] R. Chen et al., ” Investigation of Structured Green-Band Emission and Electron-Phonon Interactions in Vertically Aligned ZnO Nanowires”, J. Phys. Chem. C 114,
17889 (2010)
[12] B.J. Jin et al., ” Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition”, Thin Solid Films 366, 107 (2000)
[13] A. Mohanta et al., ” Photoluminescence study of ZnCdO alloy”, J. Appl. Phys. 103, 024901 (2008)
[14] Y. R. Ryu et al., ” Properties of arsenic-doped -type ZnO grown by hybrid beam deposition”, Appl. Phys. Lett. 83, 87 (2003)
[15] 方俊鑫,陸棟 (1989)。固態物理學(一版)。臺北市:亞東。
[16] W. Y. Liang et al., ” TRANSMISSION SPECTRA OF ZnO SINGLE CRYSTALS”, Phys. Rev. 20, 2 (1968)
[17] K. Cho et al. (1979), Excitons(1st ed.), New York : Springer-Verlag.
[18] K. Huang & A. Rhys, Proc. Roy. Soc. (London), 204A (1950), p. 406
[19] P. Varshni et al., ” Temperature dependence of the energy gap in semiconductors”, Physica 34, 149 (1967)
[20] G. D. Cody, in Hydrogenated Amorphous Silicon, edited by J. I. Pankove, Semiconductors and Semimetals Vol. 21, Pt. b (Academic, New York, 1984), Chap. 2, pp. 11–79.
[21] A. Manoogian & A. Leclerc, ” Determination of the Dilation and Vibrational Contributions to the Energy Band Gaps in Germanium and Silicon”, Phys. Stat. Sol. B 92, K23 (1979)
[22] C. X. Shan et al., ” Temperature dependent photoluminescence study on phosphorus doped ZnO nanowires”, Appl. Phys. Lett. 92, 073103 (2008)
[23] Y. R. Ryu et al.,“Properties of arsenic-doped -type ZnO grown by hybrid beam deposition”,Appl. Phys. Lett. 83, 87 (2003)
[24] X. H. Wang et al., ” Two-electron-satellite transition of donor bound exciton in ZnO: Radiative Auger effect”, Appl. Phys. Lett. 102, 181909 (2013)
[25] D. C. Reynolds et al., ” Neutral-donor–bound-exciton complexes in ZnO crystals”, Phys. Rev. B 57, 19 (1998)
[26] H. Alves et al., “Optical investigations on excitons bound to impurities and dislocations in ZnO”, Optical Materials 23, 33 (2003)
[27] B. K. Meyer et al., ” Bound exciton and donor–acceptor pair recombinations in ZnO”, Phys. Stat. Sol. (b) 241, No. 2, 231–260 (2004)
[28] H. Hamada et al. , ” Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode”, Materials 10, 875 (2017)
[29] P. Zhou et al., ” Temperature-dependent photoluminescence properties of Mn:ZnCuInS nanocrystals”, Opt. Mater. Express 5, 2069 (2015)
[30] W. Liu et al., ” Temperature-Dependent Photoluminescence of ZnCuInS/ZnSe/ZnS Quantum Dots”, J. Phys. Chem. C 117, 19288 (2013)
指導教授 鄭劭家(Chao-Chia Cheng) 審核日期 2019-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明