博碩士論文 105222010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.131.110.169
姓名 黃怡誠(Yi-Cheng Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Oxidative steam reforming of ethanol on rhodium nanoclusters supported by graphene grown on Ru(0001))
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們研究以銠(Rhodium)奈米粒子作為催化劑鍍在graphene上用釕(Ruthenium)單晶作為基板,了解水(H2O)及氧氣(O2)在乙醇(Ethanol)的氧化蒸氣重整反應中如何扮演有效改變反應途徑的角色。並藉由熱脫附質譜儀(TPD)、紅外光反射吸收能譜(IRAS)與同步輻射光電子能譜(PES)表面探測技術在超高真空(UHV)的環境下進行表面量測。結果顯示,當有氧原子(O*)預先吸附在銠奈米粒子表面上會促進乙醇的分解並改變反應途徑從純乙醇吸附藉由C-Hβ的斷鍵形成乙醇中間產物oxametallacycle (CH2CH2O*)改變為藉由C-Hα的斷鍵形成乙醛(CH3CHO*),此變大大促進了氫氣(H2)的產生,也生成副產物一氧化碳(CO)及甲烷(CH4)。而隨著高氧原子覆蓋量的表面,反應途徑轉向為生成乙酸(CH3COO*),此改變抑制了氫氣的產生但也促進生成了二氧化碳。水以分子的狀態吸附在銠奈米粒子上並沒有分解且脫附溫度低於200 K。相反的,當氧原子預先吸附於銠奈米粒子金屬表面上,有大部分的水分解形成氫氧根(OH*)及氧原子(O*)且脫附溫度高於常溫300 K。在之後的乙醇的氧化蒸氣重整反應中水與氧的共同吸附對於反應的效率並沒有像氧預先吸附那樣有效且明顯的改變反應途逕及產量。
摘要(英) With rhodium-based catalysts, rhodium nanoclusters supported on graphene grown on Ru(0001) surface, we investigated how oxygen and water play effective roles in the oxidative steam reforming reaction of ethanol, under ultrahigh vacuum conditions and using temperature programmed desorption (TPD), infrared reflection adsorption spectroscopy (IRAS), synchrotron-based photoemission spectroscopy (PES). The result show that the atomic oxygen (O*) on Rh surfaces promoted the decomposition of ethanol and altered the reaction pathway from the one via C-Hβ bond cleavage forming oxametallacycle to that via C-Hα bond cleavage forming acetaldehyde; the alternation high promoted the production of H2 along with the side products of CO, CH4. The reaction pathway shifted to acetate intermediates with higher oxygen content, which suppressed the production of H2 but promoted that of CO2. Water adsorbed molecularly on Rh surface; no water was dissociated and water desorbed below 200 K. In contrast, on atomic oxygen (O*) pre-covered Rh surface, a great fraction of water molecules underwent dissociation into atomic hydrogen and hydroxyl groups (OH*) and desorbed above room temperature 300 K. The OH* on D2O*/O*-Rh clusters surface abstracted H from ethanol, like O* but did not altered the reaction pathway as effectively as O*- the O2 effect in this aspect is more significant than the H2O one.
關鍵字(中) ★ 氧化蒸氣重整
★ 乙醇
★ 銠
關鍵字(英) ★ Oxidative steam reforming
★ Ethanol
★ Rhodium
★ water
★ oxygen
論文目次 摘要 i
Abstract ii
Chapter 1 Introduction 1
Reference 3
Chapter 2 Literature survey 5
2.1 The Characterization of graphene/Ru(0001) 5
2.2 H2O dissociation on oxygen-covered Rh(111) 10
2.3 Ethanol reforming on Rh catalyst 13
2.3.1 Ethanol decomposition on clean Rh(111) 13
2.3.2 Ethanol decomposition on oxygen pre-covered surface 17
2.3.3 Oxidative steam reforming of Ethanol on Rh(111) 21
2.3.4 Ethanol decomposition on clean Rh(100) 23
2.3.5 Ethanol decomposition on oxygen-covered Rh(100) 27
Chapter 3 Experiment Methods and Apparatus 31
3.1 Experiment methods 31
3.1.1 Cleaning Ru(0001) 31
3.1.2 Graphene ultrathin film growth 33
3.1.3 Vapor deposition of Rh 34
3.1.4 Ethanol adsorption and reaction 34
3.2 Temperature programmed desorption (TPD) 36
3.3 Infrared reflection adsorption spectroscopy (IRAS) 41
3.4 Fourier Transform Interferometers 44
3.5 Photoemission Spectroscopy (PES) 47
3.5.1 PES analysis System 47
3.5.2 X-ray Photoelectron Spectroscopy (XPS) 47
Reference 51
Chapter 4 Results and discussions 52
4.1 Adsorbed CO as a probe on Rh clusters/graphene/Ru(0001) 52
4.2 Reaction of ethanol on varied oxidative Rh nanoclusters surface 53
4.2.1 Reaction products of ethanol decomposition on bare Rh clusters surface 53
4.2.2 Reaction products of ethanol decomposition on oxygen pre-adsorbed Rh clusters (O*-Rh) surface 55
4.2.3 Reaction products of ethanol decomposition on oxygen and water co-adsorbed Rh clusters (D2O*/O*-Rh) surface 57
4.2.3.1 Water dissociation on oxygen-covered Rh clusters surface 57
4.2.3.2 Ethanol decomposition on oxygen and water co-adsorbed Rh clusters (D2O*/O*-Rh) surface 61
4.2.4 Reaction pathway analysis for ethanol decomposition on Rh clusters surface 64
4.2.5 Reaction probability of ethanol on oxidative Rh clusters surface 69
Reference 71
Chapter 5 Conclusion 72
參考文獻 1-1. Navarro, R.M., M.A. Peña, and J.L.G. Fierro, Hydrogen Production Reactions from Carbon Feedstocks:  Fossil Fuels and Biomass. Chemical Reviews, 2007. 107(10): p. 3952-3991.
1-2. Huber, G.W., S. Iborra, and A. Corma, Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 2006. 106(9): p. 4044-4098.
1-3. Mattos, L.V., et al., Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. Chemical Reviews, 2012. 112(7): p. 4094-4123.
1-4. Piscina, P.R.d.l. and N. Homs, Use of biofuels to produce hydrogen (reformation processes). Chemical Society Reviews, 2008. 37(11): p. 2459-2467.
1-5. Ni, M., D.Y.C. Leung, and M.K.H. Leung, A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 2007. 32(15 SPEC. ISS.): p. 3238-3247.
1-6. Kugai, J., S. Velu, and C. Song, Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production. Catalysis Letters, 2005. 101(3): p. 255-264.
1-7. Silva, A., et al., Effect of the metal nature on the reaction mechanism of the partial oxidation of ethanol over CeO2-supported Pt and Rh catalysts. Vol. 133-135. 2008. 755-761.
1-8. Li, M., et al., Density Functional Study of Ethanol Decomposition on Rh(111). The Journal of Physical Chemistry C, 2010. 114(49): p. 21493-21503.
1-9. Wang, J.-H., C.S. Lee, and M.C. Lin, Mechanism of Ethanol Reforming: Theoretical Foundations. The Journal of Physical Chemistry C, 2009. 113(16): p. 6681-6688.
1-10. Sheng, P.Y., et al., H2 Production from Ethanol over Rh–Pt/CeO2 Catalysts: The Role of Rh for the Efficient Dissociation of the Carbon–Carbon Bond. Journal of Catalysis, 2002. 208(2): p. 393-403.
1-11. Caglar, B., J.W. Niemantsverdriet, and C.J. Weststrate, Modeling the surface chemistry of biomass model compounds on oxygen-covered Rh(100). Physical Chemistry Chemical Physics, 2016. 18(34): p. 23888-23903.
1-12. Caglar, B., et al., The effect of C–OH functionality on the surface chemistry of biomass-derived molecules: ethanol chemistry on Rh(100). Physical Chemistry Chemical Physics, 2016. 18(43): p. 30117-30127.
1-13. Fierro, V., O. Akdim, and C. Mirodatos, On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts. Green Chemistry, 2003. 5(1): p. 20-24.
1-14. Deluga, G.A., et al., Renewable Hydrogen from Ethanol by Autothermal Reforming. Science, 2004. 303(5660): p. 993.
1-15. Lee, A.F., et al., A Fast XPS study of the surface chemistry of ethanol over Pt{111}. Surface Science, 2004. 548(1): p. 200-208.
1-16. Weststrate, C.J., et al., Ethanol Adsorption, Decomposition and Oxidation on Ir(111): A High Resolution XPS Study. ChemPhysChem, 2007. 8(6): p. 932-937.
1-17. Syu, C.-Y. and J.-H. Wang, Mechanistic Study of the Oxidative Steam Reforming of EtOH on Rh(111): The Importance of the Oxygen Effect. ChemCatChem, 2013. 5(10): p. 3164-3174.
1-18. Resta, A., et al., Acetate formation during the ethanol oxidation on Rh(111). Surface Science, 2006. 600(24): p. 5136-5141.
[2-1] Marchini, S., S. Günther, and J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001). Physical Review B, 2007. 76(7): p. 075429.
[2-2] L. E. Davis, N.C.M., P. W. Palmberg, G. E. Riach, and R. E.Weber, Handbook of Auger Electron Spectroscopy. 1978: Perkin Elmer, Eden Prairie, MN.
[2-3] Pan, Y., D.-X. Shi, and H.-J. Gao, Formation of graphene on Ru(0001) surface. Chinese Physics, 2007. 16(11): p. 3151.
[2-4] Tersoff, J., Anomalous Corrugations in Scanning Tunneling Microscopy: Imaging of Individual States. Physical Review Letters, 1986. 57(4): p. 440-443.
[2-5] Himpsel, F.J., et al., Adsorbate band dispersions for C on Ru(0001). Surface Science, 1982. 115(3): p. L159-L164.
[2-6] Land, T.A., et al., STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surface Science, 1992. 264(3): p. 261-270.
[2-7] Shavorskiy, A., et al., Dissociation of water on oxygen-covered Rh{111}. The Journal of Chemical Physics, 2009. 131(21): p. 214707.
[2-8] Vesselli, E., et al., Ethanol Decomposition: CC Cleavage Selectivity on Rh(111). ChemPhysChem, 2004. 5(8): p. 1133-1140.
[2-9] Resta, A., et al., Acetate formation during the ethanol oxidation on Rh(111). Surface Science, 2006. 600(24): p. 5136-5141.
[2-10] Vesselli, E., et al., Ethanol auto-thermal reforming on rhodium catalysts and initial steps simulation on single crystals under UHV conditions. Applied Catalysis A: General, 2005. 281(1): p. 139-147.
[2-11] Syu, C.-Y. and J.-H. Wang, Mechanistic Study of the Oxidative Steam Reforming of EtOH on Rh(111): The Importance of the Oxygen Effect. ChemCatChem, 2013. 5(10): p. 3164-3174.
[2-12] Caglar, B., et al., The effect of C–OH functionality on the surface chemistry of biomass-derived molecules: ethanol chemistry on Rh(100). Physical Chemistry Chemical Physics, 2016. 18(43): p. 30117-30127.
[2-13] Caglar, B., J.W. Niemantsverdriet, and C.J. Weststrate, Modeling the surface chemistry of biomass model compounds on oxygen-covered Rh(100). Physical Chemistry Chemical Physics, 2016. 18(34): p. 23888-23903.
[3-1] J.B. Hudson, Surface Science: an introduction, J.Wiley & Sons, 1998.
[3-2] E.M. McCash, Surface Chemistry, Oxford University Press, 2001.
[3-3] H. Lüth, Surfaces and Interfaces of Solid Materials, Springer-Verlag, 1993.
[3-4] P. Hollins, J. Pritchard, Infrared studies of chemisorbed layers on single crystals, Progress in Surface Science, 19 (1985) 275-349.
[3-5] H. Ibach, Physics of Surfaces and Interfaces, Springer-Verlag, 2006.
[3-6] F.M. Hoffmann, Infrared reflection-absorption spectroscopy of adsorbed molecules, Surface Science Reports, 3 (1983) 107-192.
[3-7] E.S. A.M. Bradshaw, Infrared reflection absorption spectroscopy of adsorbed molecules, Wiley, New York, 1988.
[3-8] R.G. Greenler, Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques, The Journal of Chemical Physics, 44 (1966) 310-315.
[3-9] M. Bäumer, H.-J. Freund, Metal deposits on well-ordered oxide films, Progress in Surface Science, 61 (1999) 127-198.
[3-10] ABB FT-IR reference manual.
[3-11] 李冠卿, 近代光學, 聯經出版社, 1988.
[3-12] A. K. Stantra and D.W. Goodman, J.Phys: Condens Matter, Vol.14, R31 - R62. 2003.
[3-13] D.j. O’Connor, B. A. Sexton, R. St. C. Smart, Surface Analysis Methods in Materials Science, Springer-Verlag, 1992.
[3-14] Y. W. Yang, L. J. Fan, “High-Resolution XPS Study of Decanethiol on Au(111): Single Sulfur−Gold Bonding Interaction”, Langmuir, Vol. 18, pp. 1157 – 1164, 2002.
4-1. Caglar, B., et al., The effect of C–OH functionality on the surface chemistry of biomass-derived molecules: ethanol chemistry on Rh(100). Physical Chemistry Chemical Physics, 2016. 18(43): p. 30117-30127.
4-2. Vesselli, E., et al., Ethanol Decomposition: CC Cleavage Selectivity on Rh(111). ChemPhysChem, 2004. 5(8): p. 1133-1140.
4-3. Vesselli, E., et al., Ethanol auto-thermal reforming on rhodium catalysts and initial steps simulation on single crystals under UHV conditions. Applied Catalysis A: General, 2005. 281(1): p. 139-147.
4-4. Syu, C.-Y. and J.-H. Wang, Mechanistic Study of the Oxidative Steam Reforming of EtOH on Rh(111): The Importance of the Oxygen Effect. ChemCatChem, 2013. 5(10): p. 3164-3174.
4-5. Caglar, B., J.W. Niemantsverdriet, and C.J. Weststrate, Modeling the surface chemistry of biomass model compounds on oxygen-covered Rh(100). Physical Chemistry Chemical Physics, 2016. 18(34): p. 23888-23903.
4-6. 夏于耀, Oxidative Reforming of Ethanol on Rh(111): effect of co-adsorbed oxygen and hydroxyl,中央大學碩士論文,桃園縣,民國107年


指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2019-2-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明