博碩士論文 105222016 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:
姓名 劉哲瑋(Jhe-Wei Liou)  查詢紙本館藏   畢業系所 物理學系
(Characteristic of defect generated on graphene through pulsed scanning probe lithography)
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,石墨烯低維度和高電子遷移率特性引起了人們的關注。然而,缺少能隙的特性成為石墨烯在電子元件應用上的障礙。在石墨烯上產生缺陷是調變石墨烯能隙的一種方法。掃描探針微影技術是一種便宜且容易發展的納米尺度技術,可以在石墨烯上局部的產生缺陷。


Graphene has attracted attention in recent years because of low dimensional and high electron mobility. However, the gap-less feature is the main obstacle to further electronic application. Defect generation is one way to manipulate the band gap of graphene. To create defect on graphene, Scanning probe lithography (SPL) is a well-developed nano-meter scale technique. In our previous work, we formed graphene oxidation through negative bias SPL. However, the mechanism of the oxidation processing with SPL is still unveiled. To understand this, we set up a pulsed SPL system with precise pulse width, pulse treatment position control and the output impedance control. After point-like arrays are generated by pulsed SPL, both Raman and atomic force microscopy (AFM) measurements conclude that those defects are holes in average diameter 160 nm on graphene. In the limit of maximum current, ring-like patterns are generated. It indicates that the point-like holes are created by large charging current and that the ring patterns are caused by electrolysis which is driven by voltage. In summary, the point-like and ring-like patterns represent current dominant and voltage dominant phase in the charging process.
關鍵字(中) ★ 石墨烯
★ 缺陷
★ 掃描探針微影技術
★ 掃描探針顯微術
關鍵字(英) ★ graphene
★ defect
★ scanning probe lithography
★ scanning probe microscopy
論文目次 摘要 V
Abstract VI
List of figures VIII
Chapter 1 Introduction 1
Chapter 2 Background 4
2.1 Graphene 5
2.2 CVD growth graphene 10
2.3 Atomic Force Microscopy 12
2.4 Scanning probe lithography 16
2.5 Micro-Raman spectroscopy 22
2.6 X-ray Photoelectron spectroscopy 33

Chapter 3 Experiment 35
3.1 CVD process 36
3.2 Substrate clean process 37
3.3 Graphene transferred process 38
3.4 Pulse Scanning probe lithography 41
3.5 Micro-Raman spectroscope 42

Chapter 4 Result and Discussion 44
4.1 The defect spacing control 45
4.2 The pulse width control 47
4.3 The rise time control 53

Chapter 5 Conclusion 59

Reference 61
[1] Radisavljevic, B. et al. “Single-layer MoS2 transistors” Nature Nanotechnology 6, 147–150 (2011)
[2] Claire Berger et al. “Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics” . J, Phys. Chem. B, 108 (52), pp 19912–19916 (2004)
[3] K. S. Novoselov1and A. K. Geim et al. “Electric Field Effect in Atomically Thin Carbon Films” Science 22 Vol. 306, Issue 5696, pp. 666-669(2014)
[4] Ponomarenko, L. A. et al. “Chaotic Dirac Billiard in Graphene Quantum Dots” Science 18 Vol. 320, Issue 5874, pp. 356-358 (2008)
[5] Lei Liao et al. “High-speed graphene transistors with a self-aligned nanowire gate” Nature 467, 305–308 (2010)
[6] Raghuraman, Shivaranjan et al. “Driving Surface Chemistry at the Nanometer Scale Using Localized Heat and Stress” Nano Lett., 17 (4), pp 2111–2117 (2017)
[7] Bogdana Borca et al. “Electric-Field-Driven Direct Desulfurization” ACS Nano, 11 (5), pp 4703–4709 (2017)
[8] A. K. Geim, and K. S. Novoselov et al. “The rise of graphene”, Nat.Mater., 6, 183, (2007)
[9] Yung-Chang Lin et al.“Controllable graphene N-doping with ammonia plasma” Appl. Phys. Lett. 96, 133110 (2010)
[10] Zhengtang Luo et al. “Photoluminescence and band gap modulation in graphene oxide” Appl. Phys. Lett. 94, 111909 (2009)
[11] Justin Wu et al. “Controlled Chlorine Plasma Reaction for Noninvasive Graphene Doping” J. Am. Chem. Soc., 133 (49), pp 19668–19671 (2011)
[12] Min-Chiang Chuang et al. “Local anodic oxidation kinetics of chemical vapor deposition graphene supported on a thin oxide buffered silicon template” Carbon Volume 54, Pages 336-342 (2012)
[13] Hsiao-Mei Chien et al. “On the nature of defects created on graphene by scanning probe lithography under ambient conditions” Carbon, Volume 80, Pages 318-324 (2014)
[14] Hung-Chieh Tsai et al. “Graphene reduction dynamics unveiled” 2D Materials, Volume 2, Number 3(2015)
[15] A. H. Castro Neto et al. “The electronic properties of graphene” Rev. Mod. Phys. 81, 109 (2009)
[16] Xuesong Li, Weiwei Cai and Jinho An et al. “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils” Science 05 Vol. 324, Issue 5932, pp. 1312-1314 (2009)
[17] Keun Soo Kim et al. “Large-scale pattern growth of graphene films for stretchable transparent electrodes” Nature 457, 706-710 (2009)
[18] G.A.López and E.J.Mittemeijer “The solubility of C in solid Cu” Scripta Materialia Volume 51, Issue 1, pages 1-5 (2004)
[19] Phaedon Avouris, Tobias Hertel, and Richard Martel, “Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication ”, Phys. Rev. Lett, 71,285 (1997)
[20] DM Eigler, EK Schweizer et al. “Positioning single atoms with a scanning tunnelling microscope” Nature Vol 344 P524-526 (1990)
[21] Ricardo Garcia, Armin W. Knoll & Elisa Riedo “Advanced scanning probe lithography” Nature Nanotechnology 9, 577–587 (2014)
[22] Sacha Gómez-Moñivas et al. “Field-Induced Formation of Nanometer-Sized Water Bridges” Phys. Rev. Lett. 91, 056101(2003)
[23] Narendra Kurra et al. “Nanocarbon-Scanning Probe Microscopy Synergy: Fundamental Aspects to Nanoscale Devices” ACS Appl. Mater. Interfaces 6 (9), pp 6147–6163(2014)
[24] Brandon L. Weeks and Mark W. Vaughn “Direct Imaging of Meniscus Formation in Atomic Force Microscopy Using Environmental Scanning Electron Microscopy” Langmuir, 21 (18), pp 8096–8098(2005)
[25] A. V. Ievlev et al. “Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching” Nature Physics 10, 59–66 (2014)
[26] Dago, Arancha I., Yu K. Ryu, and Ricardo Garcia. "Sub-20 nm patterning of thin layer WSe2 by scanning probe lithography." Applied Physics Letters 109.16: 163103. (2016)
[27] Kurra, Narendra, Ronald G. Reifenberger, and Giridhar U. Kulkarni. "Nanocarbon-scanning probe microscopy synergy: fundamental aspects to nanoscale devices." ACS applied materials & interfaces 6.9: 6147-6163. (2014)
[28] Lucchese, M.M., Stavale, F., et al ,” Quantifying ion-induced defects and Raman relaxation length in graphene”, Carbon, 48, 1592.(2010)
[29] Malard, L. M., et al. "Raman spectroscopy in graphene." Physics Reports 473.5 (2009): 51-87.
[30] Pimenta, M.A., Dresselhaus, et al,” Studying disorder in Graphite-based systems by Raman spectroscopy”, Phys. Chem. Chem. Phys., 9, 1276, (2007)
[31] Knight, D.S. and White, W.B.,” Characterization of diamond films by Raman spectroscopy ”, J. Mater. Res., 4, 385, (1989)
[32] Kurra, Narendra, et al. "Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography." Nanotechnology 22.24 245302(2011)
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2017-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明