博碩士論文 105222025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:34.207.78.157
姓名 葉家榮(Chia-Jung Yeh)  查詢紙本館藏   畢業系所 物理學系
論文名稱 57Fe原子核量子光學中γ-ray光子回波的理論研究
(The theoretical study of γ-ray photon echo in 57Fe nuclear quantum optics)
相關論文
★ 利用Mössbauer放射性同位素與57FeBO3晶體產生X-ray短脈衝光源的理論研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文首先簡要介紹近幾十年來光子回波技術的發展以及γ-ray量子光學的興起。之後利用量子力學中的密度矩陣方法探討M. Afzelius等人在2009年提出的原子頻率梳量子記憶理論,並且驗證光單子脈衝通過不均勻展寬原子團所形成的光子回波,其向前讀取效率有54%的上限。有了原子頻率梳量子記憶的概念後,我們結合了γ-ray量子光學的方法將頻率梳運用在原子核系統上,來探討高能量光子與原子核的作用。本論文主要研究的物理系統為γ-ray光子和鐵57靶材組的交互作用,透過外加磁場的操控來產生有效率的光子回波。在這個系統的理論分析上,我們給出第一光子回波的解並和數值模擬計算作比較,其結果大致上吻合。在效率最佳化方面,我們探討各個物理參數的最佳範圍讓第一光子回波有好的效率表現。另外,我們也討論了變化各個物理參數對光子回波的影響,包含改變靶材組的厚度分佈、翻轉外加磁場方向、選擇特定的靶材數目與靶材排列的順序等。
摘要(英) In this thesis, we firstly give the brief introduction to the development of photon echo techniques in the last decades and the emergency for γ-ray quantum optics. Then we use the density matrix method in quantum mechanics to investigate the atomic frequency comb (AFC) quantum memory theory proposed by M. Afzelius et al. in 2009 and verify that the forward photon echo has the upper limit efficiency about 54% when single photon pulse propagates through the inhomogeneously broadening atomic ensemble. With the concept of the atomic frequency comb (AFC) quantum memory, we move to the nuclear system and explore the interaction between γ-ray and nuclear ensembles by combining the frequency comb method with γ-ray quantum optics. The mainly physical system we study in this thesis is the interaction between γ-ray photon and 57Fe nuclear targets. In order to generate the nuclear frequency comb, there are also external magnetic fields applied on these targets. Based on the theoretical analysis, we give first echo solution and compare it with the numerical calculations. Both analytical and numerical results show the consistency. For efficiency optimization, we discuss the best ranges for different physical parameters so that the first echo has a good performance. In addition, we also study the effect on photon echo by variating the physical parameters including changing thickness distribution of targets, inverting the external magnetic field direction, choosing the specific number and arrangement of targets.
關鍵字(中) ★ 原子核量子光學
★ 頻率梳量子記憶
★ 穆斯堡爾源
★ 原子核向前散射
★ γ-ray光子回波
關鍵字(英) ★ nuclear quantum optics
★ frequency comb quantum memory
★ Mössbauer source
★ nuclear forward scattering
★ γ-ray photon echo
論文目次 中文摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第1章 緒論 1
1-1 光子回波(Photon echo)簡介 1
1-2 X-ray/γ-ray量子光學 4
1-2-1 X-ray/γ-ray 光源 6
1-2-2 穆斯堡爾源(Mössbauer source) 7
第2章 原子頻率梳(AFC)量子記憶理論 9
2-1 薛丁格圖像(Schrödinger picture)與交互作用圖像(Interaction picture) 9
2-2 密度算符(Density operator)的性質和演化 11
2-3 二能階原子模型 14
2-4 原子頻率梳(Atomic frequency comb, AFC)量子記憶 17
2-5 量子記憶表現參數 23
第3章 γ-ray與57Fe鐵原子核交互作用之物理模型 25
3-1 57Fe鐵原子核能階在外加磁場下的超精細分裂 25
3-2 原子核向前散射(Nuclear forward scattering, NFS) 28
3-3 γ光子-原子核系統之Maxwell-Bloch方程式 30
3-4 原子核頻率梳量子記憶(Nuclear frequency comb quantum memory) 34
第4章 不同參數對光子回波效率的影響 42
4-1 光子回波效率的最佳化 42
4-2 靶材厚度分佈對第一光子回波效率的影響 45
4-3 翻轉外加磁場方向對第一光子回波效率的影響 51
4-4 靶材數目對光子回波影響的探討 58
4-5 靶材的排列順序對光子回波影響的探討 60
第5章 總結 63
附錄A: 光在均勻介質中的傳播 65
附錄B: 數值計算之收斂測試 73
參考文獻 75
參考文獻 [1] N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a Photon Echo”, Phys. Rev. Lett. 13, 567 (1964).
[2] M. D. Crisp, “Propagation of Small-Area Pulses of Coherent Light through a Resonant Medium”, Phys. Rev. A 1, 1604 (1970).
[3] T. W. Mossberg, R. Kachru, S. R. Hartmann, and A. M. Flusberg, “Echoes in gaseous media: A generalized theory of rephasing phenomena”, Phys. Rev. A 20, 1976 (1979).
[4] Carlson, N. W.; Rothberg, L. J.; Yodh, A. G.; Babbitt, W. R.; Mossberg, T. W., “Storage and time reversal of light pulses using photon echoes”, Optics Letters 8(9) 483-485 (1983).
[5] K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson and W. R. Babbitt, “Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG”, J. Lumin. 107, 62 (2004).
[6] Lin, H.; Wang, T.; Mossberg, T. W., “Demonstration of 8-Gbit/in.2 areal storage density based on swept-carrier frequency-selective optical memory”, Optics Letters 20(15) 1658-1660 (1995).
[7] X. Wang, M. Afzelius, N. Ohlsson, U. Gustafsson, and S. Kröll, “Coherent transient data-rate conversion and data transformation”, Opt. Lett. 25, 945 (2000).
[8] Z. W. Barber, M. Tian, R. R. Reibel, and W. R. Babbit, “Optical pulse shaping using optical coherent transients”, Opt. Express 10, 1145 (2002).
[9] S.A. Moiseev and S. Kröll, “Complete Reconstruction of the Quantum State of a Single-Photon Wave Packet Absorbed by a Doppler-Broadened Transition”, Phys. Rev. Lett. 87, 173601 (2001).
[10] S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids”, J. Opt. B 5, S497 (2003).
[11] M. Nilsson and S. Kröll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles”, Opt. Commun. 247, 393 (2005).
[12] Kraus et al., “Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening”, Phys. Rev. A 73, 020302(R) (2006).
[13] L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon Echoes Produced by Switching Electric Fields”, Phys. Rev. Lett. 96, 043602 (2006).
[14] N. Sangouard et al., “Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening”, Phys. Rev. A 75, 032327 (2007).
[15] G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-Optic Quantum Memory for Light Using Two-Level Atoms”, Phys. Rev. Lett. 100, 023601 (2008).
[16] J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, “Analytic treatment of controlled reversible inhomogeneous broadening quantum memories for light using two-level atoms”, Phys. Rev. A 78, 032337 (2008).
[17] G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal Properties and Dynamics of Gradient Echo Quantum Memory”, Phys. Rev. Lett. 101, 203601 (2008).
[18] B. C. Buchler, M. Hosseini, G. H´etet, B. M. Sparkes, and P. K. Lam, “Precision spectral manipulation of optical pulses using a coherent photon echo memory”, Opt. Lett. 35, 1091 (2010).
[19] G. Hétet, M. Hosseini, B.M. Sparkes, D. Oblak, P. K. Lam, B. C. Buchler, “Photon echoes generated by reversing magnetic field gradients in a rubidium vapour”, Opt. Lett. 33, 20, 2323 (2008).
[20] M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications”, Nature (London) 461, 241 (2009).
[21] B. M. Sparkes, M. Hosseini, G. Hétet, P. K. Lam, and B. C. Buchler, ”ac Stark gradient echo memory in cold atoms”, Phys. Rev. A 82, 043847 (2010).
[22] Mikael Afzelius, Christoph Simon, Hugues de Riedmatten, and Nicolas Gisin, “Multimode quantum memory based on atomic frequency combs”, Phys. Rev. A 79, 052329 (2009).
[23] H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light–matter interface at the single-photon level”, Nature (London) 456, 773 (2008).
[24] A. Amari et al., “Towards an efficient atomic frequency comb quantum memory”, J. Lumin. 130, 1579 (2010).
[25] Mikael Afzelius et al., “Demonstration of Atomic Frequency Comb Memory for Light with Spin-Wave Storage”, Phys. Rev. Lett. 104, 040503 (2010).
[26] B. W. Adams et al., “X-ray quantum optics”, J. Mod. Opt. 60, 2 (2013).
[27] W.-T. Liao, A. Palffy, and C. H. Keitel, “Coherent storage and phase modulation of single hard-x-ray photons using nuclear excitons”, Phys. Rev. Lett. 109, 197403 (2012).
[28] P. Helisto, E. Ikonen, T. Katila, and K. Riski, “Coherent transient effects in Mossbauer spectroscopy”, Phys. Rev. Lett. 49, 1209 (1982).
[29] P. Helisto, E. Ikonen, and T. Katila, “Enhanced transient effects due to saturated absorption of recoilless γ –radiation”, Phys. Rev. B 34, 3458 (1986).
[30] P. Helisto, I. Tittonen, M. Lippmaa, and T. Katila, “Gamma echo”, Phys. Rev. Lett. 66, 2037 (1991).
[31] I. Tittonen, M. Lippmaa, P. Helisto, and T. Katila, “Stepwise phase modulation of recoilless gamma radiation in a coincidence experiment: Gamma echo”, Phys. Rev. B 47, 7840 (1993).
[32] F. Vagizov, “The splitting of hyperfine lines of 57Fe nuclei in RF magnetic field”, Hyperfine Interact. 61, 1359 (1990).
[33] Yu. V. Shvyd′ko, T. Hertrich, U. van Bürck, E. Gerdau, O. Leupold, J. Metge, H. D. Rüter, S. Schwendy, G. V. Smirnov, W. Potzel, and P. Schindelmann, “Storage of nuclear excitation energy through magnetic switching”, Phys. Rev. Lett. 77, 3232 (1996).
[34] Xiwen Zhang, Wen-Te Liao, Alexey Kalachev, R.N. Shakhmuratov and Olga Kocharovskaya, “Quantum memory of single γ-ray photon by Doppler Frequency Comb”, the 45th Winter Colloquium on the Physics of Quantum Electronics, Snowbird, Utah, USA (2015).
[35] A. Pálffy, C. H. Keitel, and J. Evers, “Single-photon entanglement in the keV regime via coherent control of nuclear forward scattering”, Phys. Rev. Lett. 103, 017401 (2009).
[36] W.-T. Liao and A. Pálffy, “Proposed Entanglement of X-ray Nuclear Polaritons as a Potential Method for Probing Matter at the Subatomic Scale”, Phys. Rev. Lett. 112, 057401 (2014).
[37] W.-T. Liao, A. Pálffy, and C. H. Keitel, “Nuclear coherent population transfer with x-ray laser pulses”, Phys. Lett. B 705, 134 (2011).
[38] Xiangjin Kong and Adriana Pálffy, “Stopping Narrow-Band X-Ray Pulses in Nuclear Media”, Phys. Rev. Lett. 116, 197402 (2016).
[39] F. Vagizov, V. Antonov, Y. V. Radeonychev, R. N. Shakhmuratov, and O. Kocharovskaya, “Coherent control of the waveforms of recoilless γ-ray photons”, Nature (London) 508, 80 (2014).
[40] R. N. Shakhmuratov, F. G. Vagizov, V. A. Antonov, Y. V. Radeonychev, Marlan O. Scully and O. Kocharovskaya, “Transformation of a single-photon field into bunches of pulses”, Phys. Rev. A 92, 023836 (2015).
[41] V. A. Antonov, Y. V. Radeonychev and O. Kocharovskaya, “γ-ray-pulse formation in a vibrating recoilless resonant absorber”, Phys. Rev. A 92, 023841 (2015).
[42] Y. V. Radeonychev, V. A. Antonov, F. G. Vagizov, R. N. Shakhmuratov, and O. Kocharovskaya, “Conversion of recoilless gamma-radiation into a periodic sequence of ultrashort intense pulses in a set of several sequentially placed resonant absorbers”, Phys. Rev. A 92, 043808 (2015).
[43] European XFEL: https://www.xfel.eu/
[44] Linac Coherent Light Source (LCLS): https://portal.slac.stanford.edu/sites/lcls_ public/ Pages /Default.aspx
[45] Yu. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev, “Near-100% Bragg reflectivity of X-rays”, Nature Photon. 5, 539 (2011).
[46] Kilian P. Heeg and Jörg Evers, “X-ray quantum optics with Mössbauer nuclei embedded in thin-film cavities”, Phys. Rev. A 88, 043828 (2013).
[47] R. Röhlsberger, “Nuclear Condensed Matter Physics with Synchrotron Radiation: Basic Principles, Methodology and Applications.”, Berlin, Germany: Springer-Verlag, 2004.
[48] A. Pálffy, J. Evers, and C. H. Keitel, “Electric-dipole-forbidden nuclear transitions driven by super-intense laser fields”, Phys. Rev. C 77, 044602 (2008).
[49] Pei-Chen Guan and Ite A. Yu, “Simplification of the electromagnetically induced transparency system with degenerate Zeeman states”, Phys. Rev. A 76, 033817 (2007).
[50] Xiwen Zhang, “Exact solution of gradient echo memory and analytical treatment of gradient frequency comb”, https://arxiv.org/abs/1602.05115
[51] Lambropoulos, Peter, Petrosyan, David, “Fundamentals of Quantum Optics and Quantum Information.”, Springer-Verlag, 2007.
[52] Yu. V. Shvyd’ko, U. van Bürck, W. Potzel, P. Schindelmann, E. Gerdau, O. Leupold, J. Metge, H. D. Rüter, and G. V. Smirnov, “Hybrid beat in nuclear forward scattering of synchrotron radiation”, Phys. Rev. B 57, 3552 (1998).
指導教授 廖文德(Wen-Te Liao) 審核日期 2018-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明