博碩士論文 105222029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:52.204.98.217
姓名 汪本璿(Pen-Hsuan Wang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV)
相關論文
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 以CMS 偵測器在質心質量為8TeV使用雙渺子和三秒子頻道尋找雙電荷希格斯玻色子
★ 在質子對撞能量8TeV下尋找具有雙電子雙渺子末態的激發態輕子★ Measurement of Zγ production in 5 fb-1 of pp collisions at √s = 7 TeV with the CMS detector
★ Search for a Higgs boson decaying into γ∗γ → eeγ in pp collisions at √s = 8 TeV with the CMS detector★ Measurement of Z boson production in the electron decay channel in p+Pb collisions at √sNN = 5.02 TeV with the CMS detector
★ 火花偵測器的製成★ Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
★ Search for a Higgs boson decay into γ*γ→μμγ in pp collisions at √s = 13 TeV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有關暗光子的理論主要是出自於早期天文物理觀測的結果與 現有理論不符合,這些觀測結果指出新物理的存在。為了解 釋觀測結果,理論學家延伸自標準模型 U(1)群,在 Hidden Sector 中建立了一個新的假設性的 U(1)群。暗光子為此假設 性的 U(1)群的介子。歐洲核子 物理研究所的大強子對撞機為 目前世界上對撞能量最高且高亮度的質子質子對撞機,因此 擁有龐大的潛能來尋找 GeV 質量尺度的暗光子。本篇論文利 用質子-質子質心能量√s = 13 TeV 的對撞產生希格斯粒子, 暗光子則藉由希格斯粒子的稀有衰變來產生,並且通過暗光 子的渺子衰變頻道來尋找新的渺子-渺子對不變質量共振來尋 找暗光子,此研究使用 2016 年全年度 CMS 所蒐集的資料進
行分析,總亮度為35.9fb-1。
摘要(英) The hypothesis of Dark Photon(ZD) is motivated by a number of astrophysi- cal observational anomalies which indicate the new physics beyond Standard Model(SM) is existing in our world. The Hidden Sector contains a hypothetical U (1)D gauge group is introduced by extension of the SM. The ZD is a theoretical particle which does not play a role as Dark Matter(DM) itself but play a role as gauge mediator of hypothetical hidden U(1)D gauge group. With the advent of the Large Hadron Collider(LHC), a powerful machine with unprecedented high central-of-mass energies and high luminosities gives the potential to probe the GeV scale ZD. The searches of ZD from exotic Higgs decays and decaying into a muon pair in pp collision with √s = 13 TeV is ongoing by looking for new dilepton invariant mass in sub-GeV scale. This analysis using full 2016 data recorded by CMS detector in integrated luminosity 35.9 fb?1.
關鍵字(中) ★ 稀有希格斯衰變
★ 緊湊渺子線圈
★ 大強子對撞機緊湊渺子線圈
關鍵字(英) ★ Dark photon
★ Exotic Higgs decay
★ Large Hadron Collider
★ Compact Moun Solenoid
★ Hidden sector
論文目次 1 Introduction and Theory Overview 1
1.1 Motivation................................ 1
1.2 The Dark Photon ............................ 2
1.2.1 The Kinematic Mixing ..................... 3
1.2.2 The Production of ZD Via a New Vector-like Fermion Loop 4
1.2.3 The Production of ZD Via Kinematic Mixing in The SM H→ZγProcess ........................ 6
1.3 SignalSearchingandKinematic.................... 8
1.4 ReviewofZDSearches ......................... 10
2 The LHC and CMS detector 13
2.1 Large Hadron Collider ......................... 13
2.2 CMS Detector ............................... 14
2.2.1 Coordinate in CMS....................... 16
2.2.2 Superconducting Magnet ................... 16
2.2.3 Tracking System ........................ 16
2.2.4 Electromagnetic Calorimeter ................. 18
2.2.5 Hadron Calorimeter ...................... 20
2.2.6 Muon System .......................... 20
2.3 Trigger System.............................. 24
2.3.1 Level-1Trigger ......................... 24
2.3.2 High Level Trigger ....................... 24
3 Analysis Strategy 27
3.1 Datasets and Monte Carlo samples.................. 28
3.1.1 Datasets ............................. 28
3.1.2 Monte Carlo Samples ..................... 28
Signal samples ......................... 28
Background Samples...................... 33
3.2 Trigger .................................. 34
3.3 Objects Reconstruction and Identification . . . . . . . . . . . . . . 35
3.3.1 Vertex Reconstruction and Pile-up . . . . . . . . . . . . . . 35
3.3.2 MuonReconstruction ..................... 36
Local Reconstruction...................... 36
Global Reconstruction ..................... 37
Particle Flow Muons...................... 38
Muon Momentum Correction................. 38
3.3.3 Electron and Photon Reconstruction . . . . . . . . . . . . . 39 Clustering............................ 39
Supercluster Energy Correction................ 40
Fine Tuning of Photon Energy Scale and Smearing . . . . . 41
3.4 Objects Selection ............................ 42
3.4.1 Muon Selections ........................ 43
3.4.2 PhotonSelections........................ 44
3.5 Events Selection............................. 45
3.5.1 Higgs Mass Window Cut ................... 45
3.5.2 ?R(μ,μ)Cut .......................... 48
3.5.3 Boosted Kinematic Cut..................... 50
3.6 Corrections on Monte Carlo Sample ................. 51
3.6.1 Pileup Reweighting ...................... 51
3.6.2 ID Scaling Factors........................ 52
Photon SFs............................ 53
Double Muon Trigger SFs ................... 56
Muon SFs ............................ 58
3.7 Selected Events from Data and Acceptance×Efficiency of MC Signal 60
4 Background and Signal Estimation 63
4.1 Background ............................... 63
4.1.1 Sideband Control Region ................... 63
4.1.2 Background Fitting....................... 65
4.2 Signal................................... 67
4.2.1 FSR Recovery .......................... 68
4.2.2 Signal Fitting .......................... 69
5 Systematic Uncertainties 71
5.1 Pileup Reweighting Uncertainty ................... 71
5.2 DoubleMuon Trigger Efficiency Uncertainty . . . . . . . . . . . . 72
5.3 Photon MVA ID Efficiency Uncertainty ............... 72
5.4 Muon ID Efficiency uncertainty.................... 76
5.5 Photon Energy Scale and Smear Uncertainties . . . . . . . . . . . 77
5.6 Muon Momentum Scale and Smear Uncertainties . . . . . . . . . 78
5.7 Background Shape Uncertainties ................... 81
5.8 Total systematic uncertainty...................... 83
6 Result 85
6.1 Cross Section×Branching Ratio Limit ................ 85
6.2 Conclusion................................ 88
Bibliography 91
參考文獻 [1] J. C. Kapteyn. “First Attempt at a Theory of the Arrangement and Motion of the Sidereal System”. In: apj 55 (1922), p. 302. DOI: 10.1086/142670.
[2] F. Zwicky. “Die Rotverschiebung von extragalaktischen Nebeln”. In: Hel- vetica Physica Acta 6 (1933), pp. 110–127.
[3] R. Bernabei et al. “New results from DAMA/LIBRA”. In: (2010). DOI: 10. 1140/epjc/s10052-010-1303-9. eprint: arXiv:1002.1028.
[4] M. Aguilar et al. “First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV”. In: Phys. Rev. Lett. 110 (14 2013), p. 141102. DOI: 10.1103/PhysRevLett.110.141102. URL: https://link.aps.org/doi/10.1103/PhysRevLett.110. 141102.
[5] Maxim Pospelov. “Secluded U(1) below the weak scale”. In: (2008). DOI: 10.1103/PhysRevD.80.095002. eprint: arXiv:0811.1030.
[6] Muon et al. “Final Report of the Muon E821 Anomalous Magnetic Mo- ment Measurement at BNL”. In: (2006). DOI: 10.1103/PhysRevD.73. 072003. eprint: arXiv:hep-ex/0602035.
[7] Michel Davier et al. “Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ)”. In: (2010). DOI: 10.1140/epjc/s10052- 010-1515-z. eprint: arXiv:1010.4180.
[8] Nima Arkani-Hamed et al. “A Theory of Dark Matter”. In: (2008). DOI: 10.1103/PhysRevD.79.015014. eprint: arXiv:0810.0713.
[9] Maxim Pospelov and Adam Ritz. “Astrophysical Signatures of Secluded Dark Matter”. In: (2008). DOI: 10.1016/j.physletb.2008.12.012. eprint: arXiv:0810.1502.
[10] Douglas P. Finkbeiner and Neal Weiner. “Exciting Dark Matter and the INTEGRAL/SPI 511 keV signal”. In: (2007). DOI: 10.1103/PhysRevD. 76.083519. eprint: arXiv:astro-ph/0702587.
[11] P. Fayet. “Light spin-1/2 or spin-0 Dark Matter particles”. In: (2004). DOI: 10.1103/PhysRevD.70.023514. eprint: arXiv:hep-ph/0403226.
[12] Ashutosh Kumar Alok et al. “New Physics in b → sμ+μ? after the Measurement of RK ? ”. In: (2017). eprint: arXiv:1704.07397.
[13] K. S. Babu, Christopher Kolda, and John March-Russell. “Implications of Generalized Z-Z’ Mixing”. In: (1997). DOI: 10.1103/PhysRevD.57. 6788. eprint: arXiv:hep-ph/9710441.
[14] Daniel Feldman, Zuowei Liu, and Pran Nath. “The Stueckelberg Z′ Exten- sion with Kinetic Mixing and Milli-Charged Dark Matter From the Hid- den Sector”. In: (2007). DOI: 10.1103/PhysRevD.75.115001. eprint: arXiv:hep-ph/0702123.
[15] Eung Jin Chun, Jong-Chul Park, and Stefano Scopel. “Dark matter and a new gauge boson through kinetic mixing”. In: (2010). DOI: 10.1007/ JHEP02(2011)100. eprint: arXiv:1011.3300.
[16] S. A. Abel et al. “Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology”. In: (2008). DOI: 10.1088/1126-6708/2008/07/124. eprint: arXiv:0803.1449.
[17] Clifford Cheung et al. “Kinetic Mixing as the Origin of Light Dark Scales”. In: (2009). DOI: 10.1103/PhysRevD.80.035008. eprint: arXiv:0902. 3246.
[18] Y. Mambrini. “The kinetic dark-mixing in the light of CoGENT and XENON100”. In: (2010). DOI: 10.1088/1475-7516/2010/09/022. eprint: arXiv:1006.3318.
[19] R. Foot. “Implications of mirror dark matter kinetic mixing for CMB anisotropies”. In: (2012). DOI: 10.1016/j.physletb.2012.12.001. eprint: arXiv:1208.6022.
[20] Javier Redondo and Georg Raffelt. “Solar constraints on hidden photons re-visited”. In: (2013). DOI: 10.1088/1475-7516/2013/08/034. eprint: arXiv:1305.2920.
[21] Biswajoy Brahmachari and Amitava Raychaudhuri. “Kinetic mixing and symmetry breaking dependent interactions of the dark photon”. In: (2014). DOI: 10.1016/j.nuclphysb.2014.08.015. eprint: arXiv:1409. 2082.
[22] P Crivelli et al. “Positronium portal into hidden sector: a new experiment to search for mirror dark matter”. In: Journal of Instrumentation 5.08 (2010), P08001. URL: http://stacks.iop.org/1748-0221/5/i=08/a= P08001.
[23] Per Hansson Adrian. The Heavy Photon Search Experiment. 2013. eprint: arXiv:1301.1103.
[24] S. Andreas et al. Proposal for an Experiment to Search for Light Dark Matter at the SPS. 2013. eprint: arXiv:1312.3309.
[25] S. Y. Choi, C. Englert, and P. M. Zerwas. “Multiple Higgs-Portal and Gauge-Kinetic Mixings”. In: (2013). DOI: 10.1140/epjc/s10052-013- 2643-z. eprint: arXiv:1308.5784.
[26] Bob Holdom. “Two U(1)’s and Epsilon Charge Shifts”. In: Phys.Lett. B166 (1986).
[27] P. Galison and A. Manohar. “Two Z’s or Not Two Z’s?” In: Phys.Lett. B136 (1984).
[28] Keith R. Dienes, Christopher Kolda, and John March-Russell. “Kinetic Mixing and the Supersymmetric Gauge Hierarchy”. In: (1996). DOI: 10. 1016/S0550-3213(97)00173-9. eprint: arXiv:hep-ph/9610479.
[29] CMS Collaboration. “Search for the standard model Higgs boson decaying into two photons in pp collisions at s=7 TeV”. In: Physics Letters B 710.3 (2012), pp. 403 –425. ISSN: 0370-2693. DOI: https : / / doi.org/10.1016/j.physletb.2012.03.003. URL: http : / / www . sciencedirect . com / science / article / pii / S0370269312002547.
[30] ATLAS Collaboration. “Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb-1 of pp collisions at sqrt(s) = 7 TeV with ATLAS”. In: (2012). DOI: 10.1103/PhysRevLett.108.111803. eprint: arXiv:1202.1414.
[31] Nima Arkani-Hamed et al. “2:1 for naturalness at the LHC?” In: Journal of High Energy Physics 2013.1 (2013), p. 149. ISSN: 1029-8479. DOI: 10. 1007/JHEP01(2013)149. URL: https://doi.org/10.1007/ JHEP01(2013)149.
[32] Hooman Davoudiasl, Hye-Sung Lee, and William J. Marciano. “Dark Side of Higgs Diphoton Decays and Muon g-2”. In: (2012). DOI: 10.1103/ PhysRevD.86.095009. eprint: arXiv:1208.2973.
[33] CMS Collaboration. Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at √s = 13 TeV. 2018. eprint: arXiv: 1804.02716.
[34] ATLAS Collaboration. Measurements of Higgs boson properties in the diphoton decay channel with 36 fb?1 of pp collision data at √s = 13 TeV with the ATLAS detector. 2018. eprint: arXiv:1802.04146.
[35] David Curtin et al. “Illuminating Dark Photons with High-Energy Colliders”. In: (2014). DOI: 10.1007/JHEP02(2015)157. eprint: arXiv: 1412.0018.
[36] James D. Bjorken et al. “New Fixed-Target Experiments to Search for Dark Gauge Forces”. In: (2009). DOI: 10.1103/PhysRevD.80.075018. eprint: arXiv:0906.0580.
[37] Eder Izaguirre et al. “New Electron Beam-Dump Experiments to Search for MeV to few-GeV Dark Matter”. In: (2013). DOI: 10.1103/PhysRevD. 88.114015. eprint: arXiv:1307.6554.
[38] Miriam D. Diamond and Philip Schuster. “Searching for Light Dark Matter with the SLAC Millicharge Experiment”. In: (2013). DOI: 10.1103/ PhysRevLett.111.221803. eprint: arXiv:1307.6861.
[39] Eder Izaguirre et al. “Physics Motivation for a Pilot Dark Matter Search at Jefferson Laboratory”. In: (2014). DOI: 10.1103/PhysRevD.90.014052. eprint: arXiv:1403.6826.
[40] M. Battaglieri et al. Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab. 2016. eprint: arXiv:1607.01390.
[41] S. Abrahamyan et al. “Search for a new gauge boson in the A′ Experiment (APEX)”. In: (2011). DOI: 10.1103/PhysRevLett.107.191804. eprint: arXiv:1108.2750.
[42] H. Merkel et al. “Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron”. In: (2011). DOI: 10.1103/PhysRevLett.106. 251802. eprint: arXiv:1101.4091.
[43] The BABAR Collaboration and B. Aubert. Search for Dimuon Decays of a Light Scalar in Radiative Transitions Y(3S) -> gamma A0. 2009. eprint: arXiv:0902.2176.
[44] The BABAR Collaboration. “Search for a dark photon in e+e- collisions at BABAR”. In: (2014). DOI: 10.1103/PhysRevLett.113.201801. eprint: arXiv:1406.2980.
[45] KLOE-2 Collaboration et al. “Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector”. In: (2012). DOI: 10.1016/j.physletb.2013.01.067. eprint: arXiv:1210.3927.
[46] WASA at COSY Collaboration et al. “Search for a dark photon in the π0 → e+e?γ decay”. In: (2013). DOI: 10.1016/j.physletb.2013.08.055. eprint: arXiv:1304.0671.
[47] Denig, Achim. “Review of dark photon searches”. In: EPJ Web Conf. 130 (2016), p. 01005. DOI: 10.1051/epjconf/201613001005. URL: https: //doi.org/10.1051/epjconf/201613001005.
[48] Lyndon Evans and Philip Bryant. “LHC Machine”. In: Journal of Instrumentation 3.08 (2008), S08001. URL: http://stacks.iop.org/1748- 0221/3/i=08/a=S08001.
[49] S. Chatrchyan et al. “The CMS Experiment at the CERN LHC”. In: JINST 3 (2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.
[50] V. I. Klyukhin et al. “Measuring the Magnetic Flux Density in the CMS Steel Yoke”. In: (2012). DOI: 10.1007/s10948-012-1967-5. eprint: arXiv:1212.1657.
[51] V Veszpremi. “Operation and performance of the CMS tracker”. In: Journal of Instrumentation 9.03 (2014), p. C03005. URL: http://stacks.iop. org/1748-0221/9/i=03/a=C03005.
[52] CMS Collaboration. “Performance and Operation of the CMS Electromagnetic Calorimeter”. In: (2009). DOI: 10 . 1088 / 1748 - 0221 / 5 / 03 / T03010. eprint: arXiv:0910.3423.
[53] CMS Collaboration. “Performance of the CMS Hadron Calorimeter with Cosmic Ray Muons and LHC Beam Data”. In: (2009). DOI: 10.1088/ 1748-0221/5/03/T03012. eprint: arXiv:0911.4991.
[54] S Chatrchyan et al. “Performance of the CMS Drift Tube Chambers with Cosmic Rays”. In: JINST 5 (2010), T03015. DOI: 10.1088/1748-0221/ 5/03/T03015. arXiv: 0911.4855 [physics.ins-det].
[55] The CMS Collaboration. “The performance of the CMS muon detector in proton-proton collisions at sqrt(s) = 7 TeV at the LHC”. In: (2013). DOI: 10.1088/1748-0221/8/11/P11002. eprint: arXiv:1306.6905.
[56] PYTHIA8 Hidden Valley. http : / / home . thep . lu . se / Pythia / pythia82html/HiddenValleyProcesses.html.
[57] Hidden Valley MC Generation with Pythia8. https : / / twiki . cern . ch / twiki/bin/view/Sandbox/HiddenValleyPythia8.
[58] CMS Collaboration. “Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV”. In: (2012). DOI: 10.1088/1748-0221/ 7/10/P10002. eprint: arXiv:1206.4071.
[59] CMS Collaboration. “Particle-flow reconstruction and global event description with the CMS detector”. In: (2017). DOI: 10.1088/1748-0221/ 12/10/P10003. eprint: arXiv:1706.04965.
[60] The CMS collaboration. “The performance of the CMS muon detector in proton-proton collisions at sqrt(s) = 7 TeV at the LHC”. In: Journal of Instrumentation 8.11 (2013), P11002. URL: http://stacks.iop.org/1748- 0221/8/i=11/a=P11002.
[61] Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and MET. Tech. rep. CMS-PAS-PFT-09-001. Geneva: CERN, 2009. URL: http: //cds.cern.ch/record/1194487.
[62] Rochester Muon Momentum Correction. https://www-cdf.fnal.gov/ ~jyhan/cms_momscl/cms_rochcor_manual.html.
[63] CMS Collaboration. “Performance of photon reconstruction and identi- fication with the CMS detector in proton-proton collisions at sqrt(s) = 8 TeV”. In: (2015). DOI: 10.1088/1748-0221/10/08/P08010. eprint: arXiv:1502.02702.
[64] CMS Collaboration. “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at sqrt(s) = 8 TeV”. In: (2015). DOI: 10.1088/1748-0221/10/06/P06005. eprint: arXiv: 1502.02701.
[65] Jerome H. Friedman. “Greedy function approximation: A gradient boost- ing machine.” In: Ann. Statist. 29.5 (Oct. 2001), pp. 1189–1232. DOI: 10. 1214/aos/1013203451. URL: https://doi.org/10.1214/aos/ 1013203451.
[66] CMS Collaboration. “Measurements of properties of the Higgs boson de- caying into the four-lepton final state in pp collisions at sqrt(s) = 13 TeV”. In: (2017). DOI: 10.1007/JHEP11(2017)047. eprint: arXiv:1706. 09936.
[67] CMS Egamma POG. MVA recipes for 2016 data and Spring16 MC. https : / / twiki . cern . ch / twiki / bin / view / CMS / MultivariatePhotonIdentificationRun2.
[68] CMS Collaboration. Tag and Probe. https://twiki.cern.ch/twiki/ bin/view/CMSPublic/TagAndProbe.
[69] CMS Collaboration. Electron Tag and Probe. https://twiki.cern.ch/ twiki/bin/view/CMSPublic/ElectronTagAndProbe.
[70] CMS Higgs to ZZ Group. H -> ZZ -> 4l analysis (Run II analysis for Moriond 2017). https://twiki.cern.ch/twiki/bin/viewauth/CMS/ HiggsZZ4l2017.
指導教授 郭家銘(Chia-Ming Kuo) 審核日期 2018-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明