博碩士論文 105222033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.140.197.65
姓名 夏于耀(Yu-Yao Hsia)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Oxidative Reforming of Ethanol on Rh(111): effect of co-adsorbed oxygen and hydroxyl)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 藉由改變乙醇(C2H5OH)、水(H2O)和氧氣(O2)的比例,我們利用了熱脫附質譜儀術(TPD)和以同步輻射作為光源的光電子能譜(PES),研究在銠單晶111晶面上的乙醇氧化蒸氣重組(oxidative reforming of ethanol)。
  為了闡明反應過程,我們首先進行在氧氣的共同吸附下,乙醇分解的實驗。共同吸附的氧原子,會促進乙醇分解,進而導致了氫氣(H2)、一氧化碳(CO)、以及甲烷(CH4)等產物的增加;而相反的,當氧原子的覆蓋量增加至0.5 ML時,氫氣和一氧化碳的生成被抑制了,但是水分子和二氧化碳的生成量卻增加了。因此我們可以發現氧原子有傾向和表面的氫原子和一氧化碳鍵結。
  當表面的氧原子的覆蓋率在0.15 ML以下時,吸附的水分子會部分分解成氫原子和氫氧根團。只有一層的水覆蓋在表面上時,乙醇的反應機率幾乎會倍增,這顯示了氫氧根團可以使得表面變得更加氧化,而促進乙醇分解。然而,氫氣和甲烷的產量卻只有些微的增加,雖然由水分解來的表面氫原子多少可以幫助氫的產量增加,但是水的脫附使得大量氫原子無法留在表面上,去增加氫氣的產量。而當有大量的水先覆蓋在表面上時,乙醇仍然可以鑽進水層,與單晶表面進行蒸氣重組的反應。
摘要(英) We investigated the oxidative steam reforming of ethanol on Rh(111) single crystal controlled by the ethanol/water/oxygen molecular ratio with temperature programmed desorption (TPD) and synchrotron-based photoemission spectroscopy (PES). To shed light on the reaction, we first carried out the decomposition of ethanol co-adsorbed with atomic oxygen on Rh(111) single crystal. The co-adsorbed atomic oxygen promoted decomposition of ethanol and resulted in an enhanced production of hydrogen, carbon monoxide and methane; a high coverage of co-adsorbed atomic oxygen (0.5 ML), in contrast, suppressed the production of hydrogen and carbon monoxide but promoted the formation of water and carbon dioxide. The atomic oxygen atoms presents the tendencies to binding to surface hydrogen atoms and surface carbon monoxide.
Adsorbed water molecules were partially dissociated into hydroxyl groups and hydrogen atoms when they were co-adsorbed with atomic oxygen less than 0.15 ML. With one monolayer adsorbed water, the reaction probability of ethanol almost doubled, showing that hydroxyl groups provided a more oxidative environment for ethanol to decompose. Whereas, the production of hydrogen and methane slightly increased. Hydrogen-rich surface somehow improved the production but the diffusion of ethanol into water layers pressed out the position of monolayer water, leading to the contribution of hydroxyl and water reduced.
關鍵字(中) ★ 氧化蒸氣改造
★ 乙醇
★ 銠
關鍵字(英) ★ Oxidative reforming
★ Ethanol
★ Rh(111)
★ Oxygen
★ Water
論文目次 Contents
摘 要 i
Abstract ii
List of Figure .. iv
Chapter 1 Introduction 1
Chapter 1 reference 3
Chapter 2 Literature Survey 4
2.1 Oxygen adsorption on Rh(111) single crystal surface 4
2.2 H2O dissociation on oxygen-covered Rh(111) 7
2.3 Ethanol reforming on Rh catalyst 10
Chapter 2 reference 20
Chapter 3 Experimental Method & Apparatus 21
3.1 Experimental methods 21
3.2 Photoemission Spectroscopy (PES) 32
Chapter 3 reference 36
Chapter 4 Results and Discussion 37
4.1 Water dissociation on oxygen-covered Rh(111) surface 37
4.2 Decomposition of ethanol on clean Rh(111) surface 42
4.3 Oxidative reforming of ethanol on Rh(111) surface 46
4.4 Diffusion of ethanol into water layer 59
Chapter 4 reference 64
Chapter 5 Conclusion 65
參考文獻 [1-1] Zongyuan Liu et al., J. Phys. Chem. C 2015, 119, 18248−18256
[1-2] B. Caglar,* M. Olus Ozbek, J. W. (Hans) Niemantsverdriet and C. J. (Kees-Jan) Weststrate, Phys. Chem. Chem. Phys., 2016, 18, 30117
[1-3] B. Caglar,* J. W. (Hans) Niemantsverdriet and C. J. (Kees-Jan) Weststrate, Phys. Chem. Chem. Phys., 2016, 18, 23888
[2-1] D.G. CASTNER * and G.A. SOMORJAI, Applications of Surface Science 6 (1980) 29-38.
[2-2] Jonathan Derouin, Rachael G. Farber, and Daniel R. Killelea *, J. Phys. Chem. C 2015, 119, 14748−14755.
[2-3] A. Shavorskiy, T. Eralp, E. Ataman, C. Isvoranu, J. Schnadt, J. N. Andersen, and G. Held, J. Chem. Phys. 131, 214707 (2009).
[2-4] Erik Vesselli,* Alessandro Baraldi, Giovanni Comelli, Silvano Lizzit, and Renzo Rosei, Chem. Phys. Chem. 2004, 5, 1133-1140.
[2-5] A. Resta, * , J. Blomquist, J. Gustafson, H. Karhu, A. Mikkelsen, E. Lundgren, P. Uvdal, J.N. Andersen, Surface Science 600 (2006) 5136–5141
[2-6] E. Vesselli *, G. Comelli, R. Rosei, S. Freni, F. Frusteri, S. Cavallaro, Applied Catalysis A: General 281 (2005) 139–147.
[2-7] Cih-Ying Syu and Jeng-Han Wang*, Chem. Cat. Chem. 2013, 5, 3164 – 3174
[3-1] Elaine M. McCash, Surface Chemistry, Oxford University Press, 2001.
[3-2] Hans Lüth, Surface and Interfaces of Solid (2nd), Springer-Verlag, 1993.
[3-3] Skoog D.A. et al., Principles of Instrumental Analysis (4th), Saunders College, 1992.
[3-4] J. C. Vickerman, Surface Analysis – The Principal Techniques, Jon Wiley & Sons, 1997.
[3-5] A. K. Stantra and D.W. Goodman, J.Phys: Condens Matter, Vol.14, R31 - R62. 2002.
[3-6] D.j. O’Connor, B. A. Sexton, R. St. C. Smart, Surface Analysis Methods in Materials Science, Springer-Verlag, 1992.
[3-7] Y. W. Yang, L. J. Fan, “High-Resolution XPS Study of Decanethiol on Au(111):  Single Sulfur−Gold Bonding Interaction”, Langmuir, Vol. 18, pp. 1157 – 1164, 2002.


指導教授 羅夢凡 審核日期 2018-3-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明