博碩士論文 105222034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:54.242.25.198
姓名 鐘晉毅(Chin-Yi Chung)  查詢紙本館藏   畢業系所 物理學系
論文名稱 結合以氧化應激誘發癌細胞表現損傷相關分子與過濾擠壓法來生產癌細胞衍生奈米囊泡以製作治療性癌症疫苗
(Therapeutic cancer vaccine made of cancer cell-derived nanovesicles produced by oxidative stress-induced expression of damage-associated molecular pattern and filter extrusion)
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算★ 混合物種與低溫冷凍原子團簇噴流的發展
★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析★ 以脈衝雷射沈積製造FeBO3薄膜
★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用★ 以光激發黑色素來清除細胞環境中之活性氧之探討
★ 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷
★ 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制★ 研究以雷射進行基板之前置處理來達到控制脈衝雷射沉積的矽鍺量子點的尺寸分布的可行性
★ 以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 以基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯有機太陽能電池★ 藥物劑量與復原時間影響光動力療法疫苗之功效的系統性研究
★ 光控制實用的材料製程在PEM燃料電池及光電元件上的應用★ 以脈衝雷射沉積與脈衝雷射退火製造鍺/矽量子點與成長鍺薄膜於單晶矽上並應用於光偵測器的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-1-31以後開放)
摘要(中) 基於使用光動力療法(PDT)製備的癌症疫苗在動物實驗模型中,已被證實是治療癌症更有效的方法相較於其他癌細胞所衍生的癌症疫苗。似乎是由於光動力療法處理後的癌細胞產生高表現的熱休克蛋白70(HSP70)或其他與氧化應激誘導的損傷相關分子模式(DAMPs),藉此所衍生的細胞膜奈米囊泡和細胞碎片使其效果更佳。為了開發出更具有治療潛力的癌症疫苗,從此實驗做延伸,我們使用不同氧化應激處理的方法去製備癌症疫苗,包括光動力療法使用標靶細胞不同位置的光敏藥劑、外加入H2O2應激處理和使用低溫氣壓式電漿(CAP)流應激處理。此外,我們將氧化應激處理後的癌細胞,使用過濾擠壓法(Filter Extrusion)產生奈米囊泡來製備癌症疫苗。藉由檢測癌症疫苗激活巨噬細胞產生一氧化氮(NO)濃度的測試、癌症疫苗激活的巨噬細胞與癌細胞共培養的毒殺測試。發現使用過濾擠壓法所產生的奈米囊泡通常比細胞自發性釋放的奈米囊泡更有效果。此外,與其他氧化應激源相比,使用低溫氣壓式電漿流處理所產生的疫苗是最有效的。結合低溫氣壓式電漿流處理以及過濾擠壓法所製備的癌症疫苗最具有治療癌症的潛力。
摘要(英) Photodynamic therapy (PDT)-based cancer vaccine has been shown to be a more effective modality for treating cancer in animal models compared to other methods used to generate therapeutic cancer cell-derived vaccines. The higher efficacy seems to result from the generation of cell membrane nanovesicles or fragments that carry both cancer cell-specific antigens and a high surface content of HSP70 or other damage-associated molecular pattern molecules induced by oxidative stress. Aiming to develop more effective cancer vaccine along this direction, we explored cancer vaccines generated using different sources of oxidative stress, including photosensitizers that target different parts of the cells, externally added H2O2, and cold atmospheric plasma (CAP) jet. Furthermore, we explored cancer vaccines generated by using filter extrusion to produce nanovesicles from cancer cells after oxidative stress treatment. Through the tests of activating macrophages to secret NO, killing of cancer cells by co-cultured macrophages primed by the vaccines, and animal test, it is found that the vaccine based on nanovesicles generated by filter extrusion was generally more effective than that by spontaneous release of nanovesicles. In addition, the vaccine generated by using CAP jet treatment was the most effective compared to other sources of oxidative stress. The combination of CAP jet treatment and filter extrusion resulted in a vaccine that could lead to a total regression of the tumor in the mouse model, promising for human test.
關鍵字(中) ★ 奈米囊泡
★ 損傷相關分子模式
★ 低溫氣壓式電漿
★ 光動力療法
★ 過濾擠壓法
關鍵字(英) ★ Nanovesicle
★ Damage-associated molecular patterns
★ Cold atmospheric plasma jet
★ Photodynamic therapy
★ Filter extrusion
論文目次 中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vi
第 1 章 研究背景 1
1-1 癌症免疫療法簡介 1
1-2 光動力療法(PDT)疫苗介紹 3
1-3 熱休克蛋白70(HSP70)與細胞外囊泡(EVs) 6
1-4 PDT的光氧化應激與損傷相關分子模式(DAMPs) 7
1-5 低溫大氣式電漿流(CAP jet)介紹…… 8
1-6 過濾擠壓技術 9
1-7 巨噬細胞介紹 10
1-8 研究動機 11
第 2 章 實驗材料與方法 13
2-1 實驗材料 13
2-2 氧化應激處理方法 14
2-3 癌細胞表徵熱休克蛋白70測量 17
2-4 自發性與過濾擠壓法產生奈米囊泡 17
2-5 使用NTA檢測奈米囊泡大小分布及數量 19
2-6 檢測疫苗激活巨噬細胞產生一氧化氮濃度方法 19
2-7 疫苗激活巨噬細胞與癌細胞共培養毒殺測量 20
2-8 動物試驗模型 20
第 3 章 實驗結果與討論 22
3-1 自發性與過濾擠壓法奈米囊泡大小分佈與數量 22
3-2 不同光敏藥劑嵌合的癌細胞胞器 23
3-3 不同氧化應激處理的細胞影像 25
3-4 低溫大氣電漿流(CAP jet)與光動力療法(PDT)的熱影像 27
3-5 不同氧化應激方法產生熱休克蛋白70 (HSP70) 28
3-6 疫苗經過UV燈照射後的滅菌效果 29
3-7 各類疫苗激活巨噬細胞產生一氧化氮(NO)濃度比較 31
3-8 細胞染色測試各類疫苗激活巨噬細胞毒殺癌細胞比較 37
第 4 章 結論與未來展望 40
第 5 章 參考文獻 42
參考文獻 [1] Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8. Published 2018 Jan 23. doi:10.1186/s40425-018-0316-z
[2] Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:2531-2544
[3] Onea AS1, Jazirehi AR1. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas

[4] Korbelik, M. Cancer vaccines generated by photodynamic therapy. PHOTOCHEMICAL @AND@ PHOTOBIOLOGICAL SCIENCES 10, 664–669, DOI: 10.1039/c0pp00343c (2011).
[5] Korbelik, M. & Sun, J. Photodynamic therapy-generated vaccine for cancer therapy. CANCER IMMUNOLOGY IMMUNOTHERAPY 55, 900–909, DOI: 10.1007/s00262-005-0088-4 (2006).
[6] Gollnick, S., Vaughan, L. & Henderson, B. Generation of effective antitumor vaccines using photodynamic therapy. CANCER RESEARCH 62, 1604–1608 (2002).
[7] Korbelik, M., Sun, J. & Cecic, I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: Relevance for tumor response. CANCER RESEARCH 65, 1018–1026 (2005).
[8] Vega, V. L. et al. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages.
JOURNAL OF IMMUNOLOGY 180, 4299–4307, DOI: 10.4049/jimmunol.180.6.4299 (2008).
[9] Segal, B. et al. Heat shock proteins as vaccine adjuvants in infections and cancer. DRUG DISCOVERY TODAY 11, 534–540, DOI: 10.1016/j.drudis.2006.04.016 (2006).
[10] Garg, A. D., Krysko, D. V., Vandenabeele, P. & Agostinis, P. DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. PHOTOCHEMICAL @AND@ PHOTOBIOLOGICAL SCIENCES 10, 670–680, DOI: 10.1039/c0pp00294a (2011).
[11] Keidar, M. et al. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. BRITISH JOURNAL OF
CANCER 105, 1295–1301, DOI: 10.1038/bjc.2011.386 (2011).
[12] Ratovitski, E. A. et al. Anti-Cancer Therapies of 21st Century: Novel Approach to Treat Human Cancers Using Cold
Atmospheric Plasma. PLASMA PROCESSES AND POLYMERS 11, 1128–1137, DOI: 10.1002/ppap.201400071 (2014).
[13] Gay-Mimbrera, J. et al. Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer.
ADVANCES IN THERAPY 33, 894–909, DOI: 10.1007/s12325-016-0338-1 (2016).
[14] Su Chul Jang,Oh Youn Kim, Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013 Sep 24;7(9):7698-710. DOI: 10.1021/nn402232g (2013)
[15] Anthony Covarrubias1, Vanessa Byles1, Tiffany Horng1. ROS sets the stage for macrophage differentiation. Cell Research (2013) 23:984-985. DOI:10.1038/cr.2013.88; (2013)
[16] Theerawut Chanmee , Pawared Ontong , Kenjiro Konno. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment. Cancers 2014, 6, 1670-1690; DOI:10.3390/cancers6031670 (2014)
[17] Feifan Zhou, Da Xing. Regulation of HSP70 on activating macrophages using PDT induced apoptotic cells. Int J Cancer . 2009 September 15; 125(6): 1380–1389. DOI:10.1002/ijc.24520 (2009)
[18] Yang, M., McKay, D., Pollard, J. W. & Lewis, C. E. Diverse Functions of Macrophages in Different Tumor Microenviron-
ments. CANCER RESEARCH 78, 5492–5503, DOI: 10.1158/0008-5472.CAN-18-1367 (2018).

[19] Dayun Yan. Principles of using Cold Atmospheric Plasma Stimulated Media for Cancer Treatment.
[20] Pollard, J. Tumour-educated macrophages promote tumour progression and metastasis. NATURE REVIEWS CANCER 4,
71–78, DOI: 10.1038/nrc1256 (2004).
[21] Chanmee, T., Ontong, P., Konno, K. & Itano, N. Tumor-Associated Macrophages as Major Players in the Tumor
Microenvironment. CANCERS 6, 1670–1690, DOI: 10.3390/cancers6031670 (2014).
指導教授 陳賜原 審核日期 2019-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明