博碩士論文 105222604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.212.90.230
姓名 亞蒂卡(Gusti Atika Urfa)  查詢紙本館藏   畢業系所 物理學系
論文名稱 質子治療期間伽馬射線發射的研究
(Study of Gamma-Ray Emission during Proton Therapy)
相關論文
★ 雙光子碰撞產生質子反質子對的研究★ 雙光子反應產生KsKs的研究
★ 以動力學與競爭模型模擬光刺激發光的性質★ 雙光子碰撞產生P P_bar Phi 的研究
★ 質子束在水中橫向寬度及深度劑量曲線的量測與模擬★ Recombination phenomenon study by Pad Parallel Plane Ion Chamber
★ 多重線絲漂移室之初始性能★ 以最小平方法估測質子能量
★ 分析Belle實驗中 純粹e^+ e^-→D^(*±) D^0 π^∓和e^+ e^-→D^(*+) D^(*-) π^∓過程★ 分析Belle實驗中純粹四體生成e^+ e^-→D^(*±) D^∓ π^+ π^-及e^+ e^-→D^(*+) D^(*-) π^+ π^-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 質子治療為放射治療方式之一,與一般光子治療相比它具有更精確劑量投擲的特性。
質子治療在劑量分布末端急速下降提供緊致外廓的同時,卻對射程不準度造成相對敏
感,此不準度容易傷害到與腫瘤接近的敏感器官;因此,在治療過程中對質子射程作
即時監控是有其必要性。藉由監控質子與人體組織發生核反應所產生二次光子可達成
此目的。本研究採用 GEANT4 模擬軟體版本 9.4.p02,相關物件包括 PMMA 靶材及其
左右各一塊 LYSO 探測器,入射輻射源為 130 MeV 單一能量質子束,所有條件均與在
林口長庚醫院實驗條件相同,最後實驗結果與模擬結果相比。在模擬數據所觀察到光
子能量都落在 0 – 10 MeV之間,它們主要來自正子煙沒的 511 KeV光子(PAG)及各元
素激發產生的即時光子(PG)。我們以在 PMMA 靶材中產生的同位素作為估算 PAG 及
PG 數目依據。實驗中光子能譜因束流是否通過 Beam-ON 或 Beam-OFF 而不同。模擬
結果顯示 PG 或 PAG 在深度分布都可以拿來估算質子治療射程,只是兩者所測得射程
深度與布拉格峰分別相距為 1 mm 或 8 mm。比較 Beam-OFF 數據中 PAG 與模擬數據
中正子發射源在縱向深度分布,兩者分布大致相同。另外,假設 15O 及 11C之半生期為
已知,由實驗數據可推導出 15O 與 11C 兩者的比例為 1.42 : 1,此比例與模擬預測值相
近。最後我們結論 GEANT4 是一套強而有力的模擬工具,它適合模擬質子與人體組織
所發生核反應及光子產生
摘要(英) Proton therapy is a treatment modality which can deliver dose precisely to cancer tumor in comparison to photon therapy. However, the sharp distal fall-off in proton therapy provides compact comformity, yet it is sensitive to uncertainty in dose delivery during treatment. The uncertainty can be risky for sensitive organ close to the tumor. Therefore, it necessary to monitor and verify the range of proton during treatment. In-beam range monitoring can be achieved by detecting secondary gamma emitted from proton interaction with human body. This study is performed using GEANT4 monte carlo toolkit version 9.4.p02. The geometry involves a PMMA slab as the target and two detectors made of LYSO placed on either side of PMMA target. Monoenergetic proton beam with energy 130 MeV is used as radiation sources in this study. Results of simulation are compared with experiment conducted at Chang Gung Memorial Hospital in Taiwan under the same conditions as simulation. The energies of the gammas detected in simulation were in the range of 0 – 10 MeV. In this simulation study, major peaks from 511 KeV gamma, or positron annihilation gamma (PAG), and other peaks correspond to the characteristic energy of prompt gamma (PG) were observed. Isotopes generated in PMMA target are used as a reference for estimating the numbers of PAG or PG created. In experiment measurement, two types of gamma spectra are obtained from two different durations depending on proton irradiation is ON (Beam-ON) or OFF (Beam-OFF). Simulation result shows that longitudinal distribution of both PG sources and positron emitter sources are adequate to verify the range of proton treatment by a difference of 1 mm or 8 mm from Bragg peak respectively. The comparison of Beam-OFF data and simulation data of positron emitter shows that they are in good agreement in longitudinal distribution. Ratio of positron emitters in the measured data is 1.42 : 1 for 15O : 11C positron emitters, which is the same as simulation. At the end we conclude that GEANT4 monte carlo simulation toolkit is a powerful and suitable tool for simulation of nuclear interactions and gamma production from proton interaction in tissues.
關鍵字(中) ★ 質子
★ 治療
★ 伽馬
關鍵字(英) ★ prompt gamma
★ Geant4
★ proton therapy
論文目次 Table of Contents

ABSTRACT ................................................................................................................................ i Abstract (Zhongwen) ................................................................................................................. ix Acknowledgements .................................................................................................................... x Table of Contents ...................................................................................................................... xi List of Figures .......................................................................................................................... xiii List of Tables ........................................................................................................................... xvi Chapter 1 - Introduction ............................................................................................................. 1 Chapter 2 - Theory ...................................................................................................................... 5 2.1 Physics Characteristic in Proton Therapy .................................................................... 5 2.1.1 Proton Interactions with Matter ............................................................................ 5 2.1.2 Proton Bragg Peak ................................................................................................ 9 2.1.3 Range Uncertainties in Proton Therapy.............................................................. 11 2.2 In vivo range verifications in Proton Therapy ........................................................... 12 2.3 Secondary Gamma Generated during Proton Therapy .............................................. 13 Chapter 3 - Material and Method ............................................................................................. 19 3.1 GEANT4 Simulation ................................................................................................. 19 3.2 GEANT4 Monte Carlo Simulation Set-up ................................................................. 19 3.3 Research Workflow ................................................................................................... 21 Chapter 4 - Simulation Result .................................................................................................. 23 4.1 Gamma Spectrum Result ........................................................................................... 23 4.1.1 Spectrum Gamma from Different Physics List .................................................. 23 4.1.2 Spectrum Gamma from Different Target ........................................................... 26 4.1.3 Comparison with Published Work (Simulation) ................................................ 29 4.1.4 Comparison with Published Work (Experiment) ............................................... 32 4.2 Secondary Particle Produced in PMMA Target......................................................... 36 Chapter 5 - CGMH Experiment................................................................................................ 39 5.1 Aims and Objetives of CGMH Experiment ............................................................... 39 5.2 Set-up ......................................................................................................................... 39 5.3 Results and Discussions ............................................................................................. 42 5.3.1 Range Verification .............................................................................................. 42 5.3.2 Estimation of Unknown Prompt Gamma during Beam-ON period ................... 45
xii

5.3.3 Decay Time of PAG ........................................................................................... 47 Chapter 6 - Conclusions ........................................................................................................... 52 6.1 Summary .................................................................................................................... 52 6.1.1 GEANT4 Simulations for Study Gamma Emitted During Proton Therapy ....... 52 6.1.2 The Analysis of CGMH Experiment Result Compared to Simulations ............. 52 6.2 Outlook ...................................................................................................................... 53 Bibliographies ........................................................................................................................... 54
參考文獻 Bibliographies

Biology, D. (2009). What Elements Are Found in the Human Body. Retrieved May 11, 2018, from https://askabiologist.asu.edu/content/atoms-life Bom, V., Joulaeizadeh, L., & Beekman, F. (2012). Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife-edge-shaped slit. Physics in Medicine and Biology, 57(2), 297–308. https://doi.org/10.1088/00319155/57/2/297 Brown. (2013). Sodium-22 (Precautions Handling), 0–1. Chauvie, S., Francis, Z., Guatelli, S., Incerti, S., Mascialino, B., Moretto, P., … Pia, M. G. (2007). Geant4 physics processes for microdosimetrysimulation: design foundation and implementationof the first set of models, 54(6), 2619–2628. Chen, Y., & Ahmad, S. (2009). Evaluation of inelastic hadronic processes for 250 MeV proton interactions in tissue and iron using GEANT4. Radiation Protection Dosimetry, 136(1), 11–16. https://doi.org/10.1093/rpd/ncp149 EXFOR. (2018). Experimental Nuclear Reaction Data. Retrieved May 14, 2018, from http://www.nndc.bnl.gov/exfor/exfor.htm Gottschalk, B. (2011). Techniques of Proton Therapy. Retrieved from https://gray.mgh.harvard.edu/teaching/proton-techniques ICRU. (2000). Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection. Retrieved from https://icru.org/home/reports/nuclear-data-for-neutronand-proton-radiotherapy-and-for-radiation-protection-report-63 Jermann, M. (2017). Particle Therapy Patient Statistics ( per end of 2016 ) ( Data collected by the Particle Therapy Co-Operative Group ). Ptcog, 2017(December), 2016–2017. Knoll, G. E., & Wiley, J. (2000). Radiation Detection and Measurement Third Edition. Knopf, A. C., & Lomax, A. (2013). In vivo proton range verification: A review. Physics in Medicine and Biology, 58(15), 131–160. https://doi.org/10.1088/00319155/58/15/R131 Lau, A., Chen, Y., & Ahmad, S. (2012). Yields of positron and positron emitting nuclei for proton and carbon ion radiation therapy: A simulation study with GEANT4. Journal of X-Ray Science and Technology, 20(3), 317–329. https://doi.org/10.3233/XST2012-0340
55

Lau, A., Chen, Y., & Ahmad, S. (2013). Range verification of proton radiotherapy with prompt gamma rays. Journal of X-Ray Science and Technology, 21(4), 507–514. https://doi.org/10.3233/XST-130399 Lee, C.-C., Cai, S.-Y., Chao, T.-C., Lin, M.-J., & Tung, C.-J. (2015). Depth dose characteristics of proton beams within therapeutic energy range using the particle therapy simulation framework (PTSim) Monte Carlo technique. Biomedical Journal, 38(5), 408. https://doi.org/10.4103/2319-4170.167076 Leo, W. (1987). Techniques for Nuclear and Particle Physics Experiments. SpringerVerlag. https://doi.org/10.1007/978-3-642-57920-2 Min, C. H., Kim, C. H., Youn, M. Y., & Kim, J. W. (2006). Prompt gamma measurements for locating the dose falloff region in the proton therapy. Applied Physics Letters, 89(18). https://doi.org/10.1063/1.2378561 Miyatake, A., Nishio, T., Ogino, T., Saijo, N., Esumi, H., & Uesaka, M. (2010). Measurement and verification of positron emitter nuclei generated at each treatment site by target nuclear fragment reactions in proton therapy. Medical Physics, 37(8), 4445–4455. https://doi.org/10.1118/1.3462559 Moteabbed, M., Espana, S., & Paganetti, H. (2011). TH‐C‐BRB‐06: Comparison of Prompt Gamma and PET Imaging for Range Verification in Proton Therapy. Medical Physics, 38(6), 3854. https://doi.org/10.1118/1.3613511 Newhauser, W. D., & Zhang, R. (2015). The physics of proton therapy. Physics in Medicine and Biology, 60(8), R155–R209. https://doi.org/10.1088/00319155/60/8/R155 Paganetti, H. (2012). Range Uncertainties in Proton Therapy Proton Beam Range Medulloblastoma Protons. Paganetti, H. (2013). Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol, 57(11). https://doi.org/10.1088/00319155/57/11/R99.Range Park, M. S., Lee, W., & Kim, J. M. (2010). Estimation of proton distribution by means of three-dimensional reconstruction of prompt gamma rays. Applied Physics Letters, 97(15), 1–3. https://doi.org/10.1063/1.3502612 Parodi, K., Pönisch, F., & Enghardt, W. (2005). Experimental study on the feasibility of in-beam PET for accurate monitoring of proton therapy. IEEE Transactions on Nuclear Science, 52(3 II), 778–786. https://doi.org/10.1109/TNS.2005.850950 Perali, I. (2015). A prompt gamma camera for real-time range control in Proton Therapy.
56

PhD Politecnico Di Milano. Polf, J. C. (2015). effects of detector size and distance from the patient, 59(9), 2325–2340. https://doi.org/10.1088/0031-9155/59/9/2325.Detecting Polf, J. C., Panthi, R., Mackin, D. S., McCleskey, M., Saastamoinen, A., Roeder, B. T., & Beddar, S. (2013). Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation. Physics in Medicine and Biology, 58(17), 5821–5831. https://doi.org/10.1088/00319155/58/17/5821 Rosenfeld, a, Wroe, a, & Cornelius, I. (2004). Analysis of inelastic interactions for therapeutic proton beams using Monte Carlo simulation. Nuclear Science, 51(6), 3019–3025. https://doi.org/10.1109/TNS.2004.839072 S. Agostinelli, J. Allison, K. Amako, J.Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkharrdt, S. Chauvie, J. Chine, D. Z. (2003). Geant4 - a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. Retrieved from https://doi.org/10.1016/S0168-9002(03)01368-8 Schaffner, B. (1997). Range precision of therapeutic proton beams Dissertation. https://doi.org/10.3929/ETHZ-B-000225616 Tajima, S. (2009). Physics I : Physics List. Unknown. (2018). Overview, Geant4 Simulation Toolkit. Retrieved May 2, 2018, from http://geant4.web.cern.ch/ Zarifi, M., Guatelli, S., Bolst, D., Hutton, B., Rosenfeld, A., & Qi, Y. (2017). Characterization of prompt gamma-ray emission with respect to the Bragg peak for proton beam range verification: A Monte Carlo study. Physica Medica, 33(December 2016), 197–206. https://doi.org/10.1016/j.ejmp.2016.12.011
指導教授 陳鎰鋒(Augustine E. Chen) 審核日期 2018-9-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明