博碩士論文 105222605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.118.2.15
姓名 波卓洛(Pocholo Luis Pasol Mendiola)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Search for H→Zγ→bbγ produced in association with a Z boson in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC)
相關論文
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 以CMS 偵測器在質心質量為8TeV使用雙渺子和三秒子頻道尋找雙電荷希格斯玻色子
★ 在質子對撞能量8TeV下尋找具有雙電子雙渺子末態的激發態輕子★ Measurement of Zγ production in 5 fb-1 of pp collisions at √s = 7 TeV with the CMS detector
★ Search for a Higgs boson decaying into γ∗γ → eeγ in pp collisions at √s = 8 TeV with the CMS detector★ Measurement of Z boson production in the electron decay channel in p+Pb collisions at √sNN = 5.02 TeV with the CMS detector
★ 火花偵測器的製成★ Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
★ Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV★ Search for a Higgs boson decay into γ*γ→μμγ in pp collisions at √s = 13 TeV
★ Search for the rare decays of Z and Higgs bosons to J/ψ plus photon at √s = 13 TeV★ Measurement of Zγ production cross section in pp collisions at sqrt(s) = 13 TeV with the CMS detector
★ nono★ TCAD simulation of silicon detector
★ Assembly and Beam Test Analysis of sPHENIX INTT Detector★ 研究 Dalitz Higgs 的 Muon 效率用於 Run II 和多變量電子用於 CMS 的 Run III
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對 H → Zγ → bbγ 與 Z 玻色子初步調查而以得呈現出有所相
關性。這項分析是以 CMS detector 在√s = 13 TeV 所蒐集的
資料作為基準,並符合 35.9 fb^{−1} 的積分亮度。H 玻色子與 Z
玻色子相關性是由電子與緲子其一的電荷相反輕子重新被組
成。另一方面來說,希格斯玻色子是從Zγ最終產出的bbγ所
重組而成。此分析以兩個 b-tagged 噴流被分成電子與緲子通
道。在信賴水準95%,一個預期排除極限9.681 × 10^4到 4.138
× 10^4乘以電子通道中的標準模型值,而 4.081 × 10^4到 1.836
× 10^4 乘以在緲子通道中的標準模型值,而 3.863 × 10^4 到
1.669 × 10^4在兩者通道組合中。全部介於 120 GeV 到 130 GeV
的質量範圍就可獲得。
摘要(英) A preliminary search for H→Zγ→bbγ produced in association with a Z boson is presented. The analysis is based on the data collected in 2016 with the CMS detector at a center-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb^{-1}. The Z boson produced in association with the Higgs boson is reconstructed from a pair of oppositely-charged leptons, either from electrons or muons. On the other hand, the Higgs boson is reconstructed from the Zγ in final states of b¯bγ. The analysis is separated into electron and muon channels with two b-tagged jets. An expected exclusion limit at 95% confidence level of 9.681x10^4 to 4.138x10^4 times the Standard Model value in the electron channel, 4.081x10^4 to 1.836x10^4 times the Standard Model value in the muon channel, and 3.863x10^4 to 1.669x10^4 in the combination of both channels have been obtained in the 120 GeV to 130 GeV mass range.
關鍵字(中) ★ 物理
★ 高能物理
★ 原子
★ 希格斯玻色子
★ Z玻色子
★ 光子
關鍵字(英) ★ high-energy physics
★ particle physics
★ quantum field theory
★ large hadron collider
★ cern
★ compact muon solenoid
★ photon
★ european organization for nuclear research
★ z boson
★ higgs boson
★ elementary particles
★ particle detection
★ experimental particle physics
★ experimental high-energy physics
論文目次 Contents
1 Introduction and Theory Overview 1
1.1 Introduction ............................... 1
1.2 The Standard Model of elementary particles ............. 1
1.2.1 Quarks and leptons ....................... 3
1.2.2 Quantum electrodynamics .................. 3
1.2.3 Electroweak theory ....................... 4
1.2.4 Spontaneous symmetry breaking ............... 6
1.2.5 Fermion masses ......................... 9
1.2.6 The Higgs boson ........................ 10
1.2.7 Associated vector boson production ............. 11
1.3 H ! Z ................................. 14
1.3.1 Beyond the standard model (BSM) searches ......... 14
1.3.2 Decay rate ............................ 15
2 The LHC and the CMS Detector 17
2.1 The Large Hadron Collider ...................... 17
2.2 The CMS detector ............................ 17
2.2.1 Tracking system ......................... 19
2.2.2 Calorimetry ........................... 19
2.2.3 Muon system .......................... 20
3 Analysis Strategy 23
3.1 Data and simulated samples ...................... 23
3.1.1 Data samples .......................... 23
vii
3.1.2 Simulated samples ....................... 23
Signal samples ......................... 23
Background samples ...................... 25
3.2 Trigger .................................. 25
3.3 Identification of physics objects .................... 26
3.3.1 ZH ! `` + Z ! `+`b¯b ................... 27
Electron ............................. 27
Muon ............................... 28
Photon .............................. 29
b-Jets ............................... 30
b-Tagging ............................ 31
3.4 Event selections ............................. 34
3.4.1 Leptons ............................. 34
3.4.2 Photons ............................. 35
3.4.3 b-Jets ............................... 35
3.4.4 Three-body invariant mass mjj ............... 36
3.4.5 Scaling factors .......................... 37
3.5 Data-MC comparison of kinematic observables ........... 38
3.5.1 Electron channel ........................ 38
3.5.2 Muon channel .......................... 40
4 Signal and Background Estimation 43
4.1 Signal modeling ............................. 43
4.1.1 The three-body invariant mass mjj distribution ...... 43
The double-sided Crystal Ball function ........... 43
4.2 Background modeling ......................... 45
4.2.1 Estimating the turn-on region of the background ...... 45
4.2.2 F-test ............................... 47
4.2.3 Bias study ............................ 48
viii
5 Systematic Uncertainties 53
5.1 Uncertainties on the predicted signal yield ............. 53
5.2 Uncertainties on the shape of the signal model ........... 54
6 Results, Conclusions, and Outlook 57
6.1 Limit setting ............................... 57
6.2 Conclusions and outlook ........................ 60
Bibliography 63
參考文獻 [1] Willis E. Lamb and Robert C. Retherford. “Fine Structure of the Hydrogen Atom by a Microwave Method”. In: Phys. Rev. 72 (3 1947), pp. 241–243. DOI: 10.1103/PhysRev.72.241. URL: https://link.aps.org/doi/10.1103/PhysRev.72.241.

[2] Marcela Carena, Ian Low, and Carlos E. M. Wagner. “Implications of a modified Higgs to diphoton decay width”. In: Journal of High Energy Physics 2012.8 (2012). ISSN: 1029-8479.DOI: 10.1007/jhep08(2012 ) 060. URL: http://dx.doi.org/10.1007/JHEP08(2012)060.

[3] Albert M Sirunyan et al. “Search for high-mass Z resonances in protonproton collisions at ps = 8 and 13 TeV using jet substructure techniques”. In: Phys. Lett. B 772 (2017), pp. 363–387. DOI: 10.1016/j.physletb.2017.06.062. arXiv: 1612.09516 [hep-ex].

[4] L. Bergstrom and G. Hulth. “Induced Higgs Couplings to Neutral Bosons in e+e Collisions”. In: Nucl. Phys. B259 (1985). [Erratum: Nucl. Phys.B276,744(1986)], pp. 137–155. DOI: 10 . 1016 / 0550 - 3213(86 ) 90074-X,10.1016/0550-3213(85)90302-5.

[5] Abdelhak Djouadi. Decays of the Higgs bosons. Tech. rep.

[6] Esma Mobs. “The CERN accelerator complex. Complexe des accélérateurs du CERN”. In: (2016). General Photo. URL: http://cds.cern.ch/record/2197559.

[7] G. Acquistapace et al. “CMS, the magnet project: Technical design report”. In: (1997).

[8] CMS collaboration et al. “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at sqrt (s)= 8 TeV”. In: arXiv preprint arXiv:1502.02702 (2015).

[9] CMS collaboration et al. “Description and performance of track and primary-vertex reconstruction with the CMS tracker”. In: Journal of Instrumentation 9.10 (2014), P10009.

[10] CMS Collaboration. “Performance and operation of the CMS electromagnetic calorimeter”. In: Journal of Instrumentation 5.03 (2010),T03010–T03010. ISSN: 1748-0221. DOI: 10 . 1088 / 1748-0221/5/03/t03010. URL: http://dx.doi.org/10.1088/1748-0221/5/03/T03010.

[11] J Freeman. “Innovations for the CMS HCAL”. In: At the Leading Edge: The ATLAS and CMS LHC Experiments (2010), p. 259.

[12] S. Chatrchyan et al. “The CMS experiment at the CERN LHC”. In: JINST 3(2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.

[13] Florian Beaudette. “The CMS Particle Flow Algorithm”. In: Proceedings, International Conference on Calorimetry for the High Energy Frontier (CHEF 2013): Paris, France, April 22-25, 2013. 2013, pp. 295–304. arXiv: 1401.8155
[hep-ex].

[14] et. al. Chatrchyan S. “Search for the Standard Model Higgs Boson in the Decay Channel H oZZ o4l in pp collisions at ps = 7 TeV”. In: Phys. Rev. Lett. 108 (11 2012), p. 111804. DOI: 10.1103/PhysRevLett.108.111804. URL: https://link.aps.org/doi/10.1103/PhysRevLett.108.111804.

[15] A. M. Sirunyan et al. “Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at ps = 13 TeV”. In: Journal of High Energy Physics 2017.11 (2017). ISSN: 1029-8479. DOI: 10.1007/jhep11(2017)047. URL: http://dx.doi.org/10.1007/JHEP11(2017)047.

[16] A. Bodek et al. “Extracting muon momentum scale corrections for hadron collider experiments”. In: The European Physical Journal C 72.10 (2012).ISSN: 1434-6052. DOI: 10 . 1140 / epjc / s10052 - 012 - 2194 - 8. URL: http://dx.doi.org/10.1140/epjc/s10052-012-2194-8.

[17] Serguei Chatrchyan et al. “Measurement of the inclusive W and Z production cross sections in pp collisions at ps = 7 TeV with the CMS experiment”. In: Journal of High Energy Physics 2011.10 (2011), p. 132.

[18] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. “The anti-kt jet clustering algorithm”. In: Journal of High Energy Physics 2008.04 (2008), 063–063. ISSN: 1029-8479. DOI: 10.1088/1126- 6708/2008/04/063. URL: http://dx.doi.org/10.1088/1126-6708/2008/04/063.

[19] Camille Beluffi. “b jet Identification in CMS”. In: Nucl. Part. Phys. Proc. 273-275 (2016), pp. 2491–2493. DOI: 10.1016/j.nuclphysbps.2015.09.435.

[20] A.M. Sirunyan et al. “Search for Higgs boson pair production in the b¯b final state in pp collisions at s=13TeV”. In: Physics Letters B 788 (2019), 7–36. ISSN: 0370-2693. DOI: 10.1016/j.physletb.2018.10 .056.URL: http://dx.doi.org/10.1016/j.physletb.2018.10.056.

[21] Nazar Bartosik. B-Tagging.2016. URL: http://bartosik.pp.ua/hep_sketches/btagging.

[22] A.M. Sirunyan et al. “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”. In: Journal of Instrumentation 13.05 (2018), P05011–P05011. ISSN: 1748-0221. DOI: 10.1088/1748- 0221/13/05/p05011. URL: http://dx.doi.org/10.1088/1748-0221/13/05/P05011.

[23] A. M. Sirunyan et al. “Search for the decay of a Higgs boson in the ell ell channel in proton-proton collisions at sqrt(s) = 13 TeV”. In: Journal of High Energy Physics 2018.11 (2018). ISSN: 1029-8479. DOI: 10.1007/jhep11(2018)152. URL: http://dx.doi.org/10.1007/JHEP11(2018)152.

[24] S. Chatrchyan et al. “Observation of a new boson with mass near 125 GeV in pp collisions at sqrt(s) = 7 and 8 TeV”. In: Journal of High Energy Physics 2013.6 (2013). ISSN: 1029-8479. DOI: 10.1007/jhep06(2013)081. URL: http://dx.doi.org/10.1007/JHEP06(2013)081.

[25] MJ Oreglia. A study of the reactions , see appendix D. Tech. rep. SLAC report SLAC.

[26] Serguei Chatrchyan et al. “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”. In: Phys. Lett. B716 (2012), pp. 30–61. DOI: 10.1016/j.physletb.2012.08.021. arXiv: 1207.7235 [hep-ex].

[27] Josh Bendavid. Implications of Bias Threshold in Pull Definition. 2013. URL: https://indico.cern.ch/event/255493/ contributions/1584346/attachments/447909/621085/biasJun26.pdf.

[28] CMS Luminosity Measurements for the 2016 Data Taking Period. Tech. rep. CMS-PAS-LUM-17-001. Geneva: CERN, 2017. URL: https://cds.cern.ch/record/2257069.

[29] Alexander L. Read. “Presentation of search results: The CL(s) technique”. In: J. Phys. G28 (2002). [,11(2002)], pp. 2693–2704. DOI: 10.1088/0954-3899/28/10/313.

[30] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests of new physics”. In: The European Physical Journal C 71.2 (2011). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-011-1554-0. URL: http://dx.doi.org/10.1140/epjc/s10052-011-1554-0.
指導教授 郭家銘(Chia-Ming, Kuo) 審核日期 2020-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明