博碩士論文 105222606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:52.204.98.217
姓名 古亦娜(Vina Agustina Gultom)  查詢紙本館藏   畢業系所 物理學系
論文名稱 增強鎳(Ni)參雜錫(Sn)奈米粒子的超導性
(Enhanced superconductivity in Ni-doped Sn nanoparticles)
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討了Sn 和Ni 納米顆粒(NPs)複合體系的超導(SC)現象。 我們分
析了Sn 摻雜Ni 的合成壓力對四方相形成的影響。 通過熱蒸發方法製造Sn 和Ni 納米
顆粒,使用兩個分離的蒸發源進行單獨蒸發; 並且藉由各種惰性氣體的壓力的控制顆粒
的尺寸。 對於Sn 側,加熱電流為~50A,對於Ni 側,加熱電流為~80A,相應的氬氣壓
力為0.18 托和0.08 托。 使用X 射線繞射法進行晶體結構的表徵分析,然後與Rietveld
精製結合以確定樣品組成和微晶尺寸。 對於第1,第2 和第3 樣品的微晶尺寸分別達到
34.6(9)nm,33.8(9)nm 和30.1(2)。
在1.8K 和未施加磁場下測量這些樣品的AC 磁化率,從而出現超導狀態。使用
Scalapino 配件測試每個樣品。 Scalapino 擬合是通過關聯磁化率和溫度來確定超導參數
的良好描述。此外,當施加磁場Ha = 0 Oe 時,隨著樣品的粒徑減小,電子間隙δ 也變
大,穿透深度變大,0.192(8)nm,δ= 0.00206(4)kBTC,0.26 (1)nm 與δ= 0.01
(7)kBTC,1.1(2)nm,δ= 0.08(4)kBTC,表明施加的磁場將完全穿透納米粒子,
並導致抗磁效應被完全破壞。當樣品的微晶尺寸變小時,臨界磁場增加,這意味著抗
磁效率越來越好。令人驚訝的是,30.1(2)nm 的臨界溫度比塊體的臨界溫度高108 倍
(可接受的錫邊界溫度實驗值為3.722K)。此特殊樣品具有SnO2 結構,因此提升了臨
界溫度。
摘要(英) Herein, this study reports the superconductivity (SC) phenomena of Sn and Ni
nanoparticles (NPs) composite systems. We analyzed the influence of the synthesis pressure
of Sn-doped Ni in the formation of the tetragonal phase. Sn and Ni nanoparticles have been
fabricated by the thermal evaporation method with two decoupled evaporation sources for
separate evaporation; and the size of particles with various inert gas pressures was controlled.
The heating current is ~50 A for Sn side and ~80 A for Ni side with the respective argon
pressure of 0.18 torr and 0.08 torr. The characterization of crystal structure was performed using
experimental techniques such as X-ray diffraction method, then allied with Rietveld refinement
to determine the sample composition and crystallite size. The crystallite size of these samples
were achieved 34.6(9) nm, 33.8(9) nm and 30.1(2), respectively for the sample 1, sample 2 and
sample 3.
The AC susceptibility of these samples was measured at 1.8 K and zero applied
magnetic field, thus the superconducting state appeared. Each sample was tested using the
Scalapino fitting. Scalapino fitting is a good description to determine the superconducting
parameters by relating the magnetic susceptibility and temperature. In addition, when applied
magnetic field Ha = 0 Oe, the penetration depth becomes larger as the particle size of the sample
decreases and the electron gap δ become larger as well, 0.192(8) nm with δ = 0.00206(4) kBTC,
0.26(1) nm with δ = 0.01(7) kBTC, 1.1(2) nm with δ = 0.08(4) kBTC, respectively, indicating
that the applied magnetic field will completely penetrate the nanoparticles, and causing the
diamagnetic effect to be completely destroyed. Surprisingly, the critical temperature of 30.1(2)
nm is achieve higher 108 times than that of the bulk (the accepted experimental value of the tin
boundary temperature is 3.722K) kOe. This interesting sample has SnO2 structure and it made
an enhancement on the critical temperature.
關鍵字(中) ★ SnO2,納米粒子,X 射線衍射,超導性。 關鍵字(英) ★ SnO2, nanoparticles, x-ray diffraction, superconductivity.
論文目次 摘要 ....................................................................................................................................... i
ABSTRACT ......................................................................................................................... ii
ACKNOWLEDGEMENTS ................................................................................................ iii
TABLE OF CONTENTS ..................................................................................................... v
LIST OF FIGURES ............................................................................................................ vi
LIST OF TABLES .............................................................................................................. ix
EXPLANATION OF SYMBOLS ........................................................................................ x
INTRODUCTION ......................................................................................... 1
1.1 Purpose of Experiment ....................................................................................... 1
1.2 Basic Physical Properties.................................................................................... 3
1.2.1 Physical Properties of Tin ......................................................................... 3
1.2.2 Physical Properties of Nickel .................................................................... 6
1.3 Physical Properties of Nanoparticles ................................................................. 7
1.4 Basic Introduction of Superconductivity ......................................................... 13
1.4.1 Superconductivity and Ferromagnetism ................................................ 15
1.4.2 Scalapino Theory for Superconductivity ................................................ 19
References ............................................................................................................... 28
EXPERIMENTAL METHODS .................................................................. 31
2.1 Samples Preparation ........................................................................................ 31
2.2 X-ray Diffraction (XRD) .................................................................................. 35
2.3 Physical Property Measurement System (PPMS) ........................................... 37
References ............................................................................................................... 40
CRYSTALLINE STRUCTURE ANALYSIS ............................................. 41
3.1 Rietveld Refinements ........................................................................................ 41
3.2 Crystallite Sizes ................................................................................................. 49
References ............................................................................................................... 57
SUPERCONDUCTIVITY ANALYSIS OF TIN NICKEL ALLOY ......... 58
4.1 Effect of Applied Magnetic Field on Magnetic Susceptibility ......................... 58
4.2 Effect of Applied Magnetic Field on Critical Temperature ............................ 61
4.3 Effect of Applied Magnetic Field on Penetration Depth ................................. 67
References ............................................................................................................... 69
CONCLUSIONS AND FURTHER WORKS ............................................. 70
5.1 Conclusions ....................................................................................................... 70
5.2 Further Works .................................................................................................. 71
APPENDIXES .................................................................................................................... 72
參考文獻 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 74, 425 (1942).
W. Paul, J. Appl. Phys. 32, 2082 (1961).
J. D. Barnett, V. E. Bean, and H. T. Hall, J. Appl. Phys. 37, 4S. J. 875 (1966).
N. Vaiyda and G. C. Kennedy, J. Phys. Chem. Solids 31, 2329 {1970).
J. Staun Olsen, B. Buras, L. Gerward, and S. Steenstrup, J. Phys. E 14, 1154 (1981)
H. Olijnyk and W. B. Holzapfel, J. Physique (Paris) Colloq. 45, Suppl. 11, C8-153 (1984).
M. E. Cavaleri, T. G. Plymate, and J. H. Stout, J. Phys. Chem. Solids 49, 945 {1988).
H. Olijnyk, Phys. Rev. B 46, 6589 (1992).
M. A. E. A. Ament and A. R. de Vroomen, J. Phys. F 4, 1359 (1974).
J. Ihm and M. L. Cohen, Phys. Rev. B 23, 1576 (1981).
A. Svane and E. Antoncik, Solid State Commun. 58, 541 (1986).
A. Svane and E. Antoncik, Phys. Rev. B 35, 4611 (1987).
J. L. Corkill, A. Garcia, and M. L. Cohen, Phys. Rev. B 43, 9251 (1991)
B. Cheong and K. J. Chang, Phys. Rev. B 44, 4103 (1991).
H. G. Salunke, G. P. Das, and N. E. Christensen, in Proceedings of the XIII AIRAPT
Conference, Bangalore, India, Oct 1991(Oxford & IBH, New Delhi, in press).
Xavier Blase, Etienne Bustarret, Claude Chapelier, Thierry Klein, Christophe Marcenat.
Superconducting group-IV semiconductors. Nature Materials, Nature Publishing Group,
2009, 8, pp.375-382. <10.1038/NMAT2425>.
G. A. Busch and R. Kern, in Solid State Physics, edited by F. Seitz and D. Turnbull
~Academic, New York, 1960!, Vol. 11, p. 1.
David L. Heiserman, Exploring Chemical Elements and their Compounds. New
York: TAB Books, 1992.
P.J. Smith, Chemistry of Tin, Blackie Academic & Professional, London, 1998.
David R. Lide, Handbook of Chemical and Physics, CRC, 76th, 1995-1996
Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996.
271(5251): p. 933.
Michalet, X., F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan,
A.M. Wu, S.S. Gambhir and S. Weiss, Quantum dots for live cells, in vivo imaging, and
diagnostics. Science, 2005. 307(5709): p. 538-544.
Dubertret, B., P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou and A. Libchaber,
in vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002.
298(5599): p. 1759-1762.
Aspnes, D.E., Optical properties of thin films Thin Solid Films, 1982. 89(3): p. 249-262.
Francois, J.C., Y. Massiani, P. Gravier, J. Grimblot and L. Gengembre, Characterization
and optical properties of thin films formed on TiN coating during electrochemical
treatments Thin Solid Films, 1993. 223(2): p. 223-229.
Stratmann, M., R. Feser and A. Leng, Corrosion protection by organic films
Electrochimica Acta, 1994. 39(8-9): p. 1207-1214. 140
Gray, J.E. and B. Luan, Protective coatings on magnesium and its alloys – a critical
review. Journal of Alloys and Compounds, 2002. 336(1-2): p. 88-113.
Dimitrakopoulos, C.D. and P.R.L. Malenfant, Organic thin film transistors for large area
electronics. Advanced Materials, 2002. 14(2): p. 99-+.
Scherf, U. and E.J.W. List, Semiconducting polyfluorenes - Towards reliable structureproperty
relationships. Advanced Materials, 2002. 14(7): p. 477-+.
Wolf, S.A., D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L.
Roukes, A.Y. Chtchelkanova and D.M. Treger, Spintronics: A spinbased electronics
vision for the future. Science, 2001. 294(5546): p. 14881495.
Scientific Committee on Emerging and Newly Identified Health Risks, Scientific basis for
the definition of the term “nanomaterials,” European Union 2010
Pub. No. 2011-140598, Method of Manufacturing of Nanoparticle Dispersion and
Dispersion of Ink-jet printing
Chao-Ming Lai et all, December 2003, Department of Chemistry and Biochemistry,
National Chung Cheng University, Taiwan, CHEMISTRY (THE CHINESE CHEM.
SOC., TAIPEI), Vol. 61, No. 4, pp.585~597, Novel Effects and Applications of
Nanometer Materials
S. Iijima (1985). "Electron Microscopy of Small Particles". Journal of Electron
Microscopy. 34 (4): 249.
Zhang Yuheng, Li Yuzhi, superconducting physics.
R. Kubo, Journal of the Physical Society of Japan 17,975(1962)
P. W. Anderson Phys. Rev. Lett. 71,8(1993)
Zhang Lide, Qi Jimei, Nanomaterials and Nanostructures, Science Press, 2001.
J. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res., 32, 435, 1999.
F. London, H. London, Physica 2, 34 (1935); Proc. Roy. Soc. (London) A 149, 71 (1935).
J. Bardeen, L. N. Cooper, J. R. Shrieffer, Phys. Rev. 108, 5 (1957)
F.London,Superfluids (Dover,New York,1961),Vol.1,P.41
F.London and H.London,Proc.Roy.Soc.,(London) A155,(1935), 71
B. Mühlschlegel, D. J. Scalapino, and R. Denton, Phys. Rev. B 6, 5 (1972)
Kazuo Kimoto, Yoshihiro Kamiya, Minoru Nonoyama, and Ryozi Uyeda, Japan. J. Appl.
Phys., 2, 11, 702, 1963.
Nobuhiko, Japan. J. Appl. Phys., 6, 5, 553, 1967.
Su Pinshu, Ultrafine Particle Materials Technology, Fu Han Press, 1989.
Robinson, J.W., Frame, E.M.S., Frame, G.M., 2005, Undergraduate Instrumental
Analysis Sixth Edition, Marcell Dekker, New York, 535.
Clearfield, A., 2008, Chapter 2 : Introduction to Diffraction, in Clearfield, A., Reibenspies,
J.H., Bhuvanesh, N., Principles and Applications of Powder Diffraction, John Wiley &
Sons, Ltd., Oxford, UK.
PPMS Hardware & Options Manual (Quantum Design 1999).
A. C. Larson and R. B. Von Dreele, Los Alamos Natl. Lab. Rep., 2004, pp. 86–748.
B. H. Toby, J. Appl. Crystallogr., 2001, 34, 210–213.
R. Young and P. Desai, Arch. Nauki Mater., 1989, 10, 71–90.
L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Lou¨er and P. Scardi, J. Appl.
Crystallogr., 1999, 32, 36–50.
Kaduk, J. A., 2008, Chapter 8: Structure Refinement, in Clearfield, A., Reibenspies, J.H.,
Bhuvanesh, N., Principles and Applications of Powder Diffraction, John Wiley & Sons,
Ltd., Oxford, UK.
Synthesis of nanostructured SnO and SnO2 by high-energy milling of Sn powder with
stearic acid, 2013, Journal of Materials Research, Lizandro Manzato
Ateeq Ahmed, 2018, Enhanced room temperature ferromagnetism in Ni doped SnO2
nanoparticles: A comprehensive study
2010, Sn/SnOx Core-Shell Nanospheres: Synthesis, Anode Performance in Li Ion
Batteries, and Superconductivity, Xiao-Liang Wang, American Chemical Society
Dramatic increase of the onset critical temperature and critical field of elemental Sn in the
form of thin nanowires, Ying Zhang, arxiv
Payzant, E. A., 2008, Chapter 9: Other Topics, in Clearfield, A., Reibenspies, J.H.,
Bhuvanesh, N., Principles and Applications of Powder Diffraction, John Wiley & Sons,
Ltd., Oxford, UK.
Hammond, C., 2001, The Basics of Crystallography and Diffraction, 2nd Edition,
International Union of Crystallography, Oxford University Press, Oxford, UK. Caglioti
Coelho, A.A., 2016, TOPAS-Academic, Ver. 6: Technical Reference, Bruker-AXS.
Hunter, B.A., Howard, C.J., 1998, A Computer Program for Rietveld Analysis of X-Ray
and Neutron Powder Diffraction Patterns, Lucas Heights Research Laboratories,
Australian Nuclear Science and Technology Organization, Australia
N. Ahmad and S. Khan, J. Alloys Compd. 720, 502 (2017).
B. Mṻhlschlegel, D. Scalapino, and R. Denton, Phys. Rev. B 6, 1767 (1972)
Mott, N.F. Metal-insulator transitions. Taylor & Francis Ltd, London, 1974
Persson, C. & Ferreira da Silva, A. Electronic Properties of Intrinsic and Heavily Doped
3C-, nH-SiC (n=2,4,6) and II-N (III = B,Al,Ga,In) in : Optoelectronic Devices : IIINitrides,
Edited by M. Razeghi and M. Henini, Elsevier Advanced Technology, London ,
2004.
https://en.m.wikipedia.org/wiki/Fermi_level, November 08th 2018
指導教授 李文献(Wen Hsien Li) 審核日期 2019-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明