博碩士論文 105223019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.138.67.126
姓名 吳誓鴻(Shi-Hong Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用原位創新合成概念之機械力學法合成酵素金屬有機骨架複合材料研究
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬有機骨架材料(Metal-organic frameworks, MOFs)為近幾年研究迅速崛起的孔洞材料,以金屬離子或金屬氧化物及有機配體組成內部具有空腔的結構,其比表面積與吸附性質極高且擁有特定的骨架窗口大小,所以擁有諸多應用,其中一項即為酵素固定化之基板。
近幾年興起一種原位創新合成(de novo)方法,本實驗室於2015年首先發表CAT@ZIF-90即以MOFs的前驅物與酵素同時於水溶液內合成,縝密包覆酵素特點除了擁有大小篩選性,更在2017年研究發表指出被包覆的酵素有空間限制反摺疊(unfolding)現象,具有傳統吸附型固定化無法達到的優勢。
然而受限於大部分MOFs屬於熱溶劑法合成,使酵素在合成過程會失去活性;能夠水相合成的MOFs也以ZIF系列為主,其窗口(aperture)約為3.5Å使大部分底物無法進入。為了將酵素包覆拓展至其他MOFs,我們提出全新包覆的概念:利用短時間及幾乎無溶劑的機械球磨法能合成金屬有機骨架材料的優點,將酵素一同添加達到包覆效果。本研究以葡萄糖甘酶(BGL)與UiO-66-NH2的組合為範本,突破了傳統酵素固定化的方法,以機械球磨方式成功將BGL包覆到UiO-66-NH2中,並測定催化產物的生成保有活性,也因為UiO-66-NH2的耐酸性及孔洞篩選性質,使得BGL@UiO-66-NH2在蛋白質水解酶protease這樣的大分子環境中,能阻擋BGL被水解而保持催化活性。
此結果提供了Enzyme@MOFs創新合成方式,不再侷限於水相合成系統。期待在未來能同時結合機械球磨法與水相合成法,以原位創新合成概念合成更多類型的酵素金屬有機骨架複合材料,並對酵素做進一步研究。
摘要(英) Metal organic frameworks(MOFs) composed by metal ions and organic linkers are porous materials which were emerging and developed rapidly in recent years. Many applications are contributed by high porosity and specific aperture of its structure. One of the MOF applications is used as the platform for enzyme immobilizations.
Recently, a de novo approach was used for encapsulating enzymes into MOFs materials, our group successfully preformed that biocomposites have been generated under aqueous and mild condition by encapsulating catalase, enzymes for hydrogen peroxide hydrolysis, into zeolitic imidazolate framework-90 (CAT@ZIF-90). By this approach, enzyme could not only be protected in protease solution by aperture size limitation but also reduce unfolding by MOF structure confinement which difficultly achieved by adsorption immobilization.
In addition to ZIFs with 3.5Å aperture which limited penetrability of large substrates, most of MOF materials are synthesized by solvothermal ways under harsh conditions such as organic solvent and high temperature etc. in which the biological activity of enzyme is hardly maintained. To this end, we thought out of the box and proposed another concept that takes the method of mechanochemical approach with advantages of rapidly time and almost non-solvent to immobilize enzymes inside of MOFs. We demonstrated a mechanochemical method for the facile preparation of biocomposites by embedding -glucosidase, enzymes for disaccharide hydrolysis, in a Zr-MOF analog, UiO-66-NH2 and also determined the apparent biological activity. UiO-66-NH2 has a large aperture and high acid resistance, thus demonstrating potential for size-shielding against protease as well as maintaining biological function. Thus, this study provides an alternative route for encapsulating enzymes into MOFs, especially for biocomposites that are difficult to obtain under mild aqueous conditions.
關鍵字(中) ★ 金屬有機骨架材料
★ 酵素固定化
★ 機械力化學
★ 葡萄糖苷酶
關鍵字(英) ★ metal-organic framework
★ enzyme immobilization
★ mechanochemistry
★ beta-glucosidase
論文目次 目錄
中文摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 金屬有機骨架材料之概述 1
1-1-1金屬有機骨架材料(Metal-organic Frameworks) 1
1-1-2 鋯金屬有機骨架材料(Zirconium based Metal-organic Framework) 3
1-1-3 UiO-66及其衍生物簡介 4
1-2 酵素固定化(Enzyme immobilization) 7
1-3 研究動機與目的 10
第二章 實驗部分 12
2-1 實驗藥品 12
2-2 實驗儀器與原理 13
2-2-1實驗合成與鑑定儀器項目 13
2-2-2 微量型快速球磨機 14
2-2-3 X-ray繞射儀 (Powder X-ray Diffraction, PXRD) 15
2-2-4 掃描式電子顯微鏡 (Scanning Electron microscope, SEM) 17
2-2-5 紫外/可見光光譜儀 (UV/visible Spectrophotometer) 18
2-2-6 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (SDS-PAGE) 18
2-2-7 等溫氮氣吸/脫附儀 20
2-2-8 熱重力分析儀 23
2-2-9 共軛焦螢光顯微鏡 23
2-2-10 葡萄糖苷酶 (-glucosidase, BGL)與催化活性測定原理 24
2-2-11 蛋白酶 (protease) 26
2-3 實驗步驟 27
2-3-1 機械球磨法合成UiO-66-NH2 27
2-3-2 機械球磨法合成BGL@UiO-66-NH2(一步法) 27
2-3-3 機械球磨法合成BGL@UiO-66-NH2(兩步法) 28
2-3-4 測定BGL@UiO-66-NH2的BGL含量-Bradford assay 28
2-3-5 測定BGL@UiO-66-NH2的催化產物生成量 30
2-3-6 BGL@UiO-66-NH2的蛋白質凝膠電泳分析 32
2-3-7 FITC標記BGL之步驟 33
第三章 結果與討論 35
3-1 不同球磨頻率與時間對UiO-66-NH2之合成晶形探討 35
3-2 球磨合成BGL@UiO-66-NH2之粉末繞射鑑定與催化活性探討 36
3-2-1 催化活性之判斷依據-速率常數kobs 36
3-2-2 One-pot合成BGL@UiO-66-NH2之表徵與活性 38
3-2-3 Two steps合成BGL@UiO-66-NH2之表徵與活性 40
3-3 BGL@UiO-66-NH2之熱重分析探討 44
3-4 BGL@UiO-66-NH2之等溫氮氣吸/脫附探討 45
3-5 BGL@UiO-66-NH2之共軛焦顯微鏡探討 47
3-6 BGL@UiO-66-NH2在蛋白酶環境之催化活性探討 49
第四章 結論與未來展望 51
第五章 參考資料 52
參考文獻 (1) Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.et al. Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30 (37), 1704303.
(2) Islamoglu, T.; Goswami, S.; Li, Z.; Howarth, A. J.; Farha, O. K.; Hupp, J. T. Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Accounts of Chemical Research, 2017, 50 (4), 805.
(3) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science, 2013, 341 (6149), 1230444.
(4) Wu, C.-D.; Zhang, L.; Lin, W. 1D and 2D Homochiral Metal-Organic Frameworks Built from a New Chiral Elongated Binaphthalene-Derived Bipyridine. Inorganic Chemistry, 2006, 45 (18), 7278.
(5) McCusker, L. B. IUPAC Nomenclature for Ordered Microporous and Mesoporous Materials and its Application to Non-zeolite Microporous Mineral Phases. Reviews in Mineralogy and Geochemistry, 2005, 57 (1), 1.
(6) Li, B.; Wen, H.-M.; Zhou, W.; Chen, B. Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? The Journal of Physical Chemistry Letters, 2014, 5 (20), 3468.
(7) Ma, S.; Zhou, H.-C. Gas storage in porous metal–organic frameworks for clean energy applications. Chemical Communications, 2010, 46 (1), 44.
(8) Liu, M.; Xie, K.; Nothling, M. D.; Gurr, P. A.; Tan, S. S. L.; Fu, Q.; Webley, P. A.; Qiao, G. G. Ultrathin Metal–Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. ACS Nano, 2018, 12 (11), 11591.
(9) Caro, J. Are MOF membranes better in gas separation than those made of zeolites? Current Opinion in Chemical Engineering, 2011, 1 (1), 77.
(10) Wu, M.-X.; Yang, Y.-W. Metal–Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Advanced Materials, 2017, 29 (23), 1606134.
(11) Ren, H.; Zhang, L.; An, J.; Wang, T.; Li, L.; Si, X.; He, L.; Wu, X.; Wang, C.; Su, Z. Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chemical Communications, 2014, 50 (8), 1000.
(12) Beyzavi, M. H.; Klet, R. C.; Tussupbayev, S.; Borycz, J.; Vermeulen, N. A.; Cramer, C. J.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. A Hafnium-Based Metal–Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO2 Fixation and Regioselective and Enantioretentive Epoxide Activation. Journal of the American Chemical Society, 2014, 136 (45), 15861.
(13) Sun, L.; Campbell, M. G.; Dincă, M. Electrically Conductive Porous Metal–Organic Frameworks. Angewandte Chemie International Edition, 2016, 55 (11), 3566.
(14) Hendon, C. H.; Tiana, D.; Walsh, A. Conductive metal–organic frameworks and networks: fact or fantasy? Physical Chemistry Chemical Physics, 2012, 14 (38), 13120.
(15) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 2012, 112 (2), 1105.
(16) Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 2012, 112 (2), 933.
(17) Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C.-W. Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chemistry – A European Journal, 2013, 19 (34), 11139.
(18) Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 2008, 64 (36), 8553.
(19) Rabenau, A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English, 1985, 24 (12), 1026.
(20) Al-Kutubi, H.; Gascon, J.; Sudhölter, E. J. R.; Rassaei, L. Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem, 2015, 2 (4), 462.
(21) Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions, 2011, 40 (2), 321.
(22) Khan, N. A.; Jhung, S. H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coordination Chemistry Reviews, 2015, 285, 11.
(23) Do, J.-L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Central Science, 2017, 3 (1), 13.
(24) Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications, 2008, DOI:10.1039/B804126A 10.1039/B804126A(31), 3642.
(25) Safarifard, V.; Morsali, A. Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers. Coordination Chemistry Reviews, 2015, 292, 1.
(26) Dey, C.; Kundu, T.; Biswal, B. P.; Mallick, A.; Banerjee, R. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallographica Section B, 2014, 70 (1), 3.
(27) Chupka, W. A.; Berkowitz, J.; Inghram, M. G. Thermodynamics of the Zr‐ZrO2 System : The Dissociation Energies of ZrO and ZrO2. The Journal of Chemical Physics, 1957, 26 (5), 1207.
(28) Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45 (8), 2327.
(29) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 2008, 130 (42), 13850.
(30) Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.et al. Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135 (28), 10294.
(31) Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.-Y.; Jiang, H.-L.; Chen, Y.-P.; Darensbourg, D. J.; Zhou, H.-C. Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. Journal of the American Chemical Society, 2013, 135 (45), 17105.
(32) Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle Iii, T.et al. Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43 (16), 5561.
(33) Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010, 22 (24), 6632.
(34) Marshall, R. J.; Forgan, R. S. Postsynthetic Modification of Zirconium Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016 (27), 4310.
(35) Liu, X.; Demir, N. K.; Wu, Z.; Li, K. Highly Water-Stable Zirconium Metal–Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. Journal of the American Chemical Society, 2015, 137 (22), 6999.
(36) Jeremias, F.; Lozan, V.; Henninger, S. K.; Janiak, C. Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. Dalton Transactions, 2013, 42 (45), 15967.
(37) Huang, A.; Wan, L.; Caro, J. Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity. Materials Research Bulletin, 2018, 98, 308.
(38) Kim, H.-Y.; Kim, S.-N.; Kim, J.; Ahn, W.-s. Sonochemical Synthesis of UiO-66 for CO2 Adsorption and Xylene Isomer Separation, 2013.
(39) Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications, 2013, 49 (82), 9449.
(40) Hu, Z.; Castano, I.; Wang, S.; Wang, Y.; Peng, Y.; Qian, Y.; Chi, C.; Wang, X.; Zhao, D. Modulator Effects on the Water-Based Synthesis of Zr/Hf Metal–Organic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. Crystal Growth & Design, 2016, 16 (4), 2295.
(41) Zhao, Y.; Zhang, Q.; Li, Y.; Zhang, R.; Lu, G. Large-Scale Synthesis of Monodisperse UiO-66 Crystals with Tunable Sizes and Missing Linker Defects via Acid/Base Co-Modulation. ACS Applied Materials & Interfaces, 2017, 9 (17), 15079.
(42) Atzori, C.; Shearer, G. C.; Maschio, L.; Civalleri, B.; Bonino, F.; Lamberti, C.; Svelle, S.; Lillerud, K. P.; Bordiga, S. Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study. The Journal of Physical Chemistry C, 2017, 121 (17), 9312.
(43) Morris, W.; Wang, S.; Cho, D.; Auyeung, E.; Li, P.; Farha, O. K.; Mirkin, C. A. Role of Modulators in Controlling the Colloidal Stability and Polydispersity of the UiO-66 Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9 (39), 33413.
(44) Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystals. Chemistry – A European Journal, 2011, 17 (24), 6643.
(45) Užarević, K.; Wang, T. C.; Moon, S.-Y.; Fidelli, A. M.; Hupp, J. T.; Farha, O. K.; Friščić, T. Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks. Chemical Communications, 2016, 52 (10), 2133.
(46) Huang, Y.-H.; Lo, W.-S.; Kuo, Y.-W.; Chen, W.-J.; Lin, C.-H.; Shieh, F.-K. Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chemical Communications, 2017, 53 (43), 5818.
(47) Molavi, H.; Eskandari, A.; Shojaei, A.; Mousavi, S. A. Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr). Microporous and Mesoporous Materials, 2018, 257, 193.
(48) Cam Loc, L.; Thi Thuy Van, N.; Tri, N.; Tien Cuong, H. Synthesis, characterization and adsorption ability of UiO-66-NH 2. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6 (2), 025004.
(49) Anjum, M. W.; Vermoortele, F.; Khan, A. L.; Bueken, B.; De Vos, D. E.; Vankelecom, I. F. J. Modulated UiO-66-Based Mixed-Matrix Membranes for CO2 Separation. ACS Applied Materials & Interfaces, 2015, 7 (45), 25193.
(50) Cirujano, F. G.; Corma, A.; Llabrés i Xamena, F. X. Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science, 2015, 124, 52.
(51) Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V.et al. Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 2013, 135 (31), 11465.
(52) Doherty, E. A.; Doudna, J. A. Ribozyme Structures and Mechanisms. Annual Review of Biophysics and Biomolecular Structure, 2001, 30 (1), 457.
(53) Datta, S.; Christena, L. R.; Rajaram, Y. R. S. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 2013, 3 (1), 1.
(54) Mohamad, N. R.; Marzuki, N. H. C.; Buang, N. A.; Huyop, F.; Wahab, R. A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology, biotechnological equipment, 2015, 29 (2), 205.
(55) Liu, D.-M.; Chen, J.; Shi, Y.-P. Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends in Analytical Chemistry, 2018, 102, 332.
(56) Feng, W.; Ji, P. Enzymes immobilized on carbon nanotubes. Biotechnology Advances, 2011, 29 (6), 889.
(57) Popat, A.; Hartono, S. B.; Stahr, F.; Liu, J.; Qiao, S. Z.; Qing Lu, G. Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 2011, 3 (7), 2801.
(58) Kennedy, J. F.; Humphreys, J. D.; Alan Barker, S. Further facile immobilization of enzymes on hydrous metal oxides and use of their immobilization reversibility phenomena for the recovery of peptide antibiotics. Enzyme and Microbial Technology, 1981, 3 (2), 129.
(59) Kim, H.; Kwon, J.-Y. Enzyme immobilization on metal oxide semiconductors exploiting amine functionalized layer. RSC Advances, 2017, 7 (32), 19656.
(60) R. Ribeiro, R.; Vitolo, M. Anion exchange resin as support for invertase immobilization, 2009.
(61) Trevan, M. D. In New Protein Techniques; Walker, J. M., Ed.; Humana Press: Totowa, NJ, 1988, DOI:10.1385/0-89603-126-8:495 10.1385/0-89603-126-8:495.
(62) Sheldon, R. A.; Schoevaart, R.; Van Langen, L. M. Cross-linked enzyme aggregates (CLEAs): A novel and versatile method for enzyme immobilization (a review). Biocatalysis and Biotransformation, 2005, 23 (3-4), 141.
(63) Betancor, L.; López-Gallego, F.; Alonso-Morales, N.; Dellamora, G.; Mateo, C.; Fernandez-Lafuente, R.; Guisan, J., 2008; Vol. 22.
(64) In Encyclopedia of Industrial Biotechnology, DOI:doi:10.1002/9780470054581.eib275 doi:10.1002/9780470054581.eib275.
(65) González-Sáiz, J. M.; Pizarro, C. Polyacrylamide gels as support for enzyme immobilization by entrapment. Effect of polyelectrolyte carrier, pH and temperature on enzyme action and kinetics parameters. European Polymer Journal, 2001, 37 (3), 435.
(66) Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C. Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews, 2017, 46 (11), 3386.
(67) Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 2018, 118 (10), 4981.
(68) Wang, Y.; Arandiyan, H.; Scott, J.; Bagheri, A.; Dai, H.; Amal, R. Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review. Journal of Materials Chemistry A, 2017, 5 (19), 8825.
(69) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 2013, 113 (7), 5322.
(70) Perego, C.; Millini, R. Porous materials in catalysis: challenges for mesoporous materials. Chemical Society Reviews, 2013, 42 (9), 3956.
(71) Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.et al. Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2015, 137 (13), 4276.
(72) Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K. Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. Journal of the American Chemical Society, 2017, 139 (19), 6530.
(73) Shewale, J. G. β-Glucosidase: Its role in cellulase synthesis and hydrolysis of cellulose. International Journal of Biochemistry, 1982, 14 (6), 435.
(74) Bhat, M. K.; Bhat, S. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 1997, 15 (3), 583.
(75) de Carvalho, J. F.; de Medeiros, S. N.; Morales, M. A.; Dantas, A. L.; Carriço, A. S. Synthesis of magnetite nanoparticles by high energy ball milling. Applied Surface Science, 2013, 275, 84.
(76) Howard, Joseph L.; Cao, Q.; Browne, D. L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chemical Science, 2018, 9 (12), 3080.
(77) Scott, G. Mechano-chemical degradation and stabilization of polymers. Polymer Engineering & Science, 1984, 24 (13), 1007.
(78) Bunaciu, A. A.; Udriştioiu, E. g.; Aboul-Enein, H. Y. X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry, 2015, 45 (4), 289.
(79) Crewe, A. V.; Isaacson, M.; Johnson, D. A Simple Scanning Electron Microscope. Review of Scientific Instruments, 1969, 40 (2), 241.
(80) Svasti, J.; Panijpan, B. SDS-polyacrylamide gel electrophoresis. A simple explanation of why it works. Journal of Chemical Education, 1977, 54 (9), 560.
(81) Sing, K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188, 3.
(82) SING, K. S. W. REPORTING PHYSISORPTION DATA FOR GAS/SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, 1985, 57 (4), 603.
(83) Combs, C. A. Fluorescence Microscopy: A Concise Guide to Current Imaging Methods. Current Protocols in Neuroscience, 2010, 50 (1), 2.1.1.
(84) Fan, L. T.; Lee, Y.-H.; Beardmore, D. H. Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnology and Bioengineering, 1980, 22 (1), 177.
(85) Saha, B.; Abu-Omar, M. M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chemistry, 2014, 16 (1), 24.
(86) PARRY, N. J.; BEEVER, D. E.; OWEN, E.; VANDENBERGHE, I.; BEEUMEN, J. V.; BHAT, M. K. Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochemical Journal, 2001, 353 (1), 117.
(87) Kaur, J.; Chadha, B. S.; Kumar, B. A.; Kaur, G. S.; Saini, H. S. Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922, 2007.
(88) Johnson, P.; Smillie, L. B. The amino acid sequence and predicted structure of Streptomyces griseus protease A. FEBS Letters, 1974, 47 (1), 1.
(89) Jurášek, L.; Carpenter, M. R.; Smillie, L. B.; Gertler, A.; Levy, S.; Ericsson, L. H. Amino acid sequence of Streptomyces griseus protease B, a major component of pronase. Biochemical and Biophysical Research Communications, 1974, 61 (4), 1095.
(90) Lau, E. Y.; Bruice, T. C. Consequences of Breaking the Asp-His Hydrogen Bond of the Catalytic Triad: Effects on the Structure and Dynamics of the Serine Esterase Cutinase. Biophysical Journal, 1999, 77 (1), 85.
(91) Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72 (1), 248.
(92) de Moreno, M. R.; Smith, J. F.; Smith, R. V. Mechanism Studies of Coomassie Blue and Silver Staining of Proteins. Journal of Pharmaceutical Sciences, 1986, 75 (9), 907.
(93) Petkov, V. Nanostructure by high-energy X-ray diffraction. Materials Today, 2008, 11 (11), 28.
指導教授 謝發坤 審核日期 2019-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明