博碩士論文 105223023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.226.72.194
姓名 楊智翔(CHIH-HSIANG YANG)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用
相關論文
★ 含3,4-乙烯二氧噻吩輔助配位基之鋨、釕金屬錯合物合成與其在染料敏化太陽能電池的應用★ 應用於染料敏化太陽能電池之釕金屬錯合物合成與其性質探討
★ 新型三吡啶釕錯合物光敏化染料的合成與性質探討★ 釕錯合物敏化太陽能電池元件優化與光伏特性探討
★ 金屬錯合物染料敏化太陽能電池的元件優化★ 新型三吡啶鋨錯合物染料 合成與配位基效應之探討
★ 含高度共軛芳香雜環之釕錯合物的合成以應用於染料敏化太陽能電池★ 多聯吡啶釕錯合物光敏化染料的合成與性質探討
★ 有機共吸附染料的合成與性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在染料敏化太陽能電池(Dye-sensitized solar cells,DSCs)中,染料分子為影響元件效能與穩定性的關鍵組成,由先前的文獻報導得知在釕錯合物配位基引入共軛單元有利提高染料吸光能力,亦有能增加組裝成元件時的短路電流密度(Jsc)與光電轉換效率(η (%));本研究我們設計合成了兩個新型釕錯合物(代號CYC-21及CYC-35),兩者的輔助配位基(Ancillary ligand)均使用雙?啶(Bipyridine)連接3,4-Ethylenedioxythiophene (EDOT)共軛單元,而主要差異是在固著配位基(Anchoring ligand)分別引入?吩(Thiophene)及?唑(Thiazole),以剖析兩共軛雜環對於釕錯合物之光物理、電化學性質,以及由其所敏化之電池元件性能的影響。CYC-21與CYC-35的低能量Metal-to-ligand charge transfer (MLCT)吸收峰波長(λ_max)相較於N719 (521 nm)皆紅位移超過40 nm,其吸收係數亦明顯高於N719的12800 M-1 cm-1 (分別為24800 M-1 cm-1與30200 M-1 cm-1 )。搭配碘電解質的元件之IPCE結果顯示CYC-21 和CYC-35染料敏化之元件在波長700 ~ 800 nm的轉換效能確實均優於N719的電池;在AM 1.5G模擬太陽光照射條件下,由不同電解液條件的交互比較,發現CYC-35在搭配使用無添加TBP之電解液時,元件可有較高的Jsc值(17.64 mA cm-2)與光電轉換效率(5.56%);搭配含有0.1 M NBB的電解液時,CYC-21及CYC-35所敏化之元件光電轉換效率分別為7.34%及5.84% (相同條件下N719元件為6.35%)。
摘要(英) In the dye-sensitized solar cells (DSCs), dye molecules are the key components affecting efficiency and stability of the devices. It has been reported that incorporating conjugated units into the ligands of ruthenium (Ru) complexes not only can enhance the light-harvesting capability but also may increase short-circuit current density (Jsc) and overall efficiency (η (%)) of the corresponding devices. In this research, we designed and synthesized two new Ru complexes, coded CYC-21 and CYC-35, respectively containing 3,4-ethylenedioxythiophene (EDOT) in the bipyridyl-based ancillary ligand. The difference between two dyes is bearing additionally the conjugated heterocycles (thiophene or thiazole) in anchoring ligand to scrutinize their effects on physical and electrochemical properties of the Ru photosensitizers and the performance of devices. CYC-21 and CYC-35 in DMF show the lower energetic metal-to-ligand charge transfer (MLCT) transition red-shifts over 40 nm, compared to that of N719 (521 nm). Moreover, the corresponding molar absorption coefficient of CYC-21 and CYC-35 (24800 M-1 cm-1 and 30200 M-1 cm-1, respectively) is significantly higher than that of N719 (12800 M-1 cm-1). The preliminary IPCE results exhibit the devices sensitized with CYC-21 and CYC-35 in conjunction with an iodide-based electrolyte can convert more red-light photons into electricity than that of N719. Besides, it is found from the various electrolytes that the absence of TBP benefits the improvement of Jsc (17.64 mA cm-2) and efficiency (5.56%) for CYC-35 sensitized cell. The devices based on CYC-21 and CYC-35 under the illumination of AM 1.5G simulated sunlight reach efficiency of 7.34% and 5.84%, respectively when NBB concentration in the electrolyte is 0.1 M. Under the same conditions, the conversion efficiency of N719-sensitized cell is 6.35%.
關鍵字(中) ★ 染料敏化太陽能電池
★ 釕錯合物
★ 固著配位基
★ ?唑
關鍵字(英)
論文目次 中文摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VII
表目錄 XII
附錄目錄 XIV
第一章 緒論 1
1-1前言 1
1-2太陽光譜與太陽能電池的光伏參數 1
1-3太陽能電池的發展歷史簡介 4
1-4染料敏化太陽能的工作原理 7
1-5染料分子設計相關文獻探討 9
1-6釕錯合物結構設計 10
1-6-1對稱型釕錯合物染料 10
1-6-2非對稱型釕金屬錯合物染料 14
1-6-3含?唑單元之染料 26
1-7研究動機 34
第二章 實驗部分 36
2-1實驗藥品 36
2-2 (A)中間產物之結構與簡稱 39
2-2 (B)最終產物之結構與簡稱 43
2-3合成流程及詳細實驗步驟 44
2-3-1雙牙配位基Ligand-20之合成 44
2-3-2雙牙配位基Ligand-21之合成 48
2-3-3雙牙配位基Ligand-32之合成 53
2-3-4雙牙配位基Ligand-35之合成 58
2-3-5釕金屬錯合物CYC-21的合成 63
2-3-6釕金屬錯合物CYC-35的合成 68
2-3-7釕金屬錯合物CYC-32 (without -COOH)的合成 73
2-4儀器分析與樣品製備 76
2-5元件組裝與光電轉換效率測量 83
2-5-1 DSCs元件組裝流程 83
2-5-2 DSCs光電轉換效率量測系統 86
第三章 結果與討論 88
3-1 合成相關探討 88
3-1-1 雙牙配位基Ligand-32合成所遇到之問題與解決方法 88
3-1-2 釕錯合物CYC-32-OEt水解所遭遇的問題 94
3-1-3 釕錯合物(CYC-21與CYC-35)純化方式探討 98
3-2釕錯合物染料結構鑑定與光物理性質探討 101
3-2-1釕錯合物染料結構鑑定 101
3-2-2釕錯合物光物理性質探討 106
3-3 CYC-21與CYC-35分子軌域理論計算結果 112
3-4釕錯合物電化學性質與前置軌域位能計算 115
3-5 CYC-21、CYC-35及N719敏化電池元件性能探討 120
第四章 結論 143
參考文獻 145
附錄一 156
參考文獻 [1] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, "Dye-sensitized solar cells" Chem. Rev. 2010, 110, 6595-6663.
[2] "http://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra"
[3] "http://www.laserfocusworld.com/articles/2009/05/photovoltaics-measuring-the-sun.html"
[4] E. Becquerel, "Memoire sur les effets electriques produits sous l’influence des rayons solaires" C. R. Acad. Sci. 1839, 9, 561-567.
[5] "https://en.wikipedia.org/wiki/Bell_Labs"
[6] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, "Electrolytes in dye-sensitized solar cells" Chem. Rev. 2015, 115, 2136-2173.
[7] a) M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger and A. W. Y. Ho-Baillie, "Solar cell efficiency tables (version 51)" Prog. Photovolt. Res. Appl. 2018, 26, 3-12;
b) "https://www.nrel.gov/pv/assets/images/efficiency-chart.png"
[8] H. Tsubomura, M. Massumura, Y. Nomure and T. Amamiya, "Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell" Nature 1976, 261, 402-403.
[9] B. O’Regan and M. Gratzel, "A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films" Nature 1991, 353, 737-740.
[10] S. Yun, P. D. Lund and A. Hinsch, "Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells" Energy Environ. Sci. 2015, 8, 3495-3514.
[11] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, S. M. Zakeeruddin, J. H. Tsai, C. Gratzel, C. G. Wu and M. Gratzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells" ACS Nano 2009, 3, 3103-3109.
[12] S. Mathew, A. Yella, P. Gao, R. H. Baker, B. F. Curchod, N. A. Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Gratzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers" Nat. Chem. 2014, 6, 242-247.
[13] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes" Chem. Commun. 2015, 51, 15894-15897.
[14] M. Gratzel, " Photoelectrochemical cells” Nature, 2001, 414, 338-344.
[15] M. K. Nazeeruddin, I. R. A. Kay, R. H. Baker, P. L. E. Mueller, N. Vlachopoulos and M. Gratzel, "Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes" J. Am. Chem. Soc. 1993, 115, 6382-6390.
[16] a) M. K. Nazeeruddin, R. H. Baker, P. Liska, and M. Gratzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell" J. Phys. Chem. B 2003, 107, 8981-8987;
b) M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gratzel, "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers" J. Am. Chem. Soc. 2005, 127, 16835-16847.
[17] C. Klein, Md. K. Nazeeruddin, P. Liska, Davide Di Censo, N. Hirata, E. Palomares,J. R. Durrant and M. Gratzel, "Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity" Inorg. Chem. 2005, 44, 178-180.
[18] P. Wang, S. M. Zakeeruddun, R. H. Baker, J. E. Moser and M. Gratzel, "Molecular-scale interface rngineering of TiO2 nanocrystals improving the efficiency and stability of DSC" Adv. Mater. 2003, 15, 2101-2104.
[19] C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen and K. C. Ho, "A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells" Angew. Chem. Int. Ed. 2006, 45, 5822-5825.
[20] C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen and K. C. Ho, "A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells" Adv. Mater. 2007, 19, 3888-3891.
[21] N. Hirata, J. J. Lagref, E. J. Palomares, J. R. Durrant, M. K. Nazeeruddin and M. Gratzel, "Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films" Chemistry 2004, 10, 595-602.
[22] C. Y. Chen, J. G. Chen, S. J. Wu, J. Y. Li, C. G. Wu and K. C. Ho, "Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells" Angew. Chem. Int. Ed. 2008, 47, 7342-7345.
[23] 蔡嘉鴻,2009,國立中央大學化學研究所論文,P20。
[24] C. Y. Chen, N. Pootrakulchote, T. H. Hung, C. J. Tan, H. H. Tsai and S. M. Zakeeruddin, C. G. Wu and M. Gratzel, "Ruthenium sensitizer with thienothiophene-linked carbazole antennas in conjunction with liquid electrolytes for dye-sensitized solar cells" J. Phys. Chem. C 2011, 115, 20043-20050.
[25] C. Y. Chen, N. Pootrakulchote, S. J. Wu, M. Wang, J. Y. Li, J. H. Tsai, C. G. Wu, S. M. Zakeeruddin and M. Gratzel, "New ruthenium sensitizer with carbazole antennas for rfficient and stable thin-film" J. Phys. Chem. C 2009, 113, 20752-20757.
[26] T. D. Nguyen, C. H. Lin and C. G. Wu, "Effect of the CF3 substituents on the charge-transfer kinetics of high-rfficiency cyclometalated ruthenium sensitizers" Inorg. Chem. 2017, 56, 252-260.
[27] A. Mishra, N. Pootrakulchote, M. K. Fischer, C. Klein, M. K. Nazeeruddin and S. M. Zakeeruddin, "Design and synthesis of a novel anchoring ligand for highly efficient thin film dye-sensitized solar cells" Chem. Commun. 2009, 7146-7148.
[28] A. Mishra, N. Pootrakulchote, M. Wang, S.-J. Moon, S. M. Zakeeruddin and M. Gratzel, "A thiophene-based anchoring ligand and Its heteroleptic Ru (II)-complex for rfficient thin-film dye-sensitized solar cells" Adv. Funct. Mater. 2011, 21, 963-970.
[29] C. Y. Chen, N. Pootrakulchote, M. Y. Chen, T. Moehl, H. H. Tsai, S. M. Zakeeruddin, C. G. Wu and M. Gratzel, "A new heteroleptic ruthenium sensitizer for transparent dye-sensitized solar cells" Adv. Energy Mater. 2012, 2, 1503-1509.
[30] C. H. Siu, C. L. Ho, J. He, T. Chen, X. Cui, J. Zhao and W. Y. Wong, "Thiocyanate-free ruthenium (II) cyclometalated complexes containing uncommon thiazole and benzothiazole chromophores for dye-sensitized solar cells" J. Organomet. Chem. 2013. 748, 75-83.
[31] A. Colombo, C. Dragonetti, A. Valore, C. Coluccini, N. Manfredi and A. Abbotto, "Thiocyanate-free ruthenium (II) 2,2’-bipyridyl complexes for dye-sensitized solar cells" Polyhedron 2014, 82, 50-56.
[32] H. N. T. P. Gao, M. Gratzel and M. K. Nazeeruddin, "Fine-tuning the electronic structure of organic dyes for dye-sensitized solar cells" Org. Lett. 2012, 14, 4330-4333.
[33] T. Li, J. Gao, Y. Cui, C. Zhong, Q. Ye and L. Han, "Novel D-π-A carbazole sensitizers with 4-phenyl-2-(thiophen-2-yl) thiazole as π-bridge for dye-sensitized solar cells" J Photochem. Photobiol. A Chem. 2015, 303-304, 91-98.
[34] C. H. Chen, Y. C. Hsu, H. H. Chou, K. R. Thomas, J. T. Lin and C. P. Hsu, "Dipolar compounds containing fluorene and a heteroaromatic ring as the conjugating bridge for high-performance dye-sensitized solar cells" Chem. Eur. J. 2010, 16, 3184-3193.
[35] a) A. Bedi, S. P. Senanayak, K. S. Narayan and S. S. Zade, "Synthesis and characterization of copolymers based on cyclopenta[c]thiophene and bithiazole and their transistor properties" J. Polym. Sci. A Polym. Chem. 2013, 51, 4481-4488;
b) B. Fu, C. Y. Wang, B. D. Rose, Y. Jiang, M. Chang, P. H. Chu Z. Yuan, C. Fuentes-Hernandez, B. Kippelen, J. L. Bredas, D. M. Collard and E. Reichmanis, "Molecular engineering of nonhalogenated solution-processable bithiazole-based electron-transport polymeric semiconductors" Chem. Mater. 2015, 27, 2928-2937.
[36] H. Usta, W. C. Sheets, M. Denti, G. Generali, R. Capelli, S. Lu, X. Yu, M. Muccini and A. Facchetti, "Perfluoroalkyl-functionalized thiazole–thiophene oligomers as N-channel semiconductors in organic field-effect and light-emitting transistors" Chem. Mater. 2014, 26, 6542-6556.
[37] Z. Xiao, J. Subbiah, K. Sun, S. Ji, D. J. Jones, A. B. Holmes and W. W. H. Wong, "Thiazolyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic applications" J. Mater. Chem. C 2014, 2, 1306-1313.
[38] R. S. Kumar, H. Jeong, J. Jeong, R. K. Chitumalla, M. J. Ko, K. S. Kumar, J. Jang and Y. A. Son, "Synthesis of porphyrin sensitizers with a thiazole group as an efficient π-spacer: potential application in dye-sensitized solar cells" RSC Adv. 2016, 6, 41294-41303.
[39] M. Larhed, C. Moberg and A. Halleberg, "Microwave-accelerated homogeneous catalysis in organic chemistry" Acc. Chem. Res. 2002, 35, 717-727.
[40] a) B. L. Hayes, "Recent advances in microwave assisted synthesis" Aldricchim. Aceta. 2004, 17, 65-76;
b) "";
c) "CEM聚焦微波化學反應系統-中/英文操作及維護手冊"
[41] a) D. A. Skoog, F. J. Holler and S. R. Crouch. Principles of Instrumental Analysis, 6th ed. Brooks/Cole, Cengage Learning, 2007; b) D. L. Pavia, G. M. Lampman, G. S. Kriz and J. R. Vyvyan, Introduction to spectroscopy, 5th ed. Brooks/Cole, Cengage Learning, 2015.
[42] E. L. Stangeland and T. Sammakia, "Use of thiazoles in the halogen dance reaction: application to the total synthesis of WS75624 B" J. Org. Chem. 2004, 69, 2381-2385.
[43] A. Dondoni, G. Fantin, M. Fogagnolo, A. Medici and P. Pedrini, "Synthesis of (trimethylsilyl)thiazoles and reactions with carbonyl compounds. Selectivity aspects and synthetic utility" J. Org. Chem. 1988, 53, 8, 1768-1761.
[44] S. Tani, T. N. Uehara, J. Yamaguchi and K. Itami, "Programmed synthesis of arylthiazoles through sequential C–H couplings" Chem. Sci. 2014, 5, 123-135.
[45] J. Roger, F. Pozˇgan and H. Doucet, "Ligand-free palladium-catalyzed direct arylation of thiazoles at low catalyst loadings" J. Org. Chem. 2009, 74, 1179-1186.
[46] F. Besselie`vre, F. Mahuteau-Betzer, D. S. Grierson and S. Piguel, "Ligandless microwave-assisted Pd/Cu-catalyzed direct arylation of oxazoles" J. Org. Chem. 2008, 73, 3278-3280.
[47] S. I. Gorelsky, D. Lapointe and K. Fagnou," Analysis of the concerted metalation-deprotonation mechanism in palladium-catalyzed direct arylation across a broad range of aromatic substrates" J. Am. Chem. Soc. 2008, 130, 10848-10849.
[48] B. Biswas, M. Sugimoto and S. Sakaki, "C-H Bond activation of benzene and methane by M (η2-O2CH)2 (M = Pd or Pt). A theoretical study" Organometallics, 2000, 19, 3895-3908.
[49] X. Cheng, J. Wang, K. Tang, Y. Liu and C. Liu, "Decarboxylation of pyrrole-2-carboxylic acid: A DFT investigation" Chem. Phys. Lett. 2010, 496, 36-41.
[50] G. E. Dunnan and D G. J. Lee, "Kinetics and mechanism of the decarboxylation of pyrrole-zcarboxylic acid in aqueous solution" Can. J. Chem. 1971, 59, 1032-1035.
[51] H. Ozawa, T. Sugiura, T. Kuroda, K. Nozawa and H. Arakawa, "Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand" J. Mater. Chem. A. 2016, 4, 1762-1770.
[52] 陳旻裕,2011,國立中央大學化學研究所論文,P57。
[53] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, S. I. Goreslky, A. B. P. Lever and M. Gratzel, "Copolymerization of polar monomers with olefins using transition-metal complexes" Chem. Rev. 2000, 100, 1479-1493.
[54] H. Rensmo, S. So‥dergren, L. Patthey, K. Westmark, L. Vayssieres, O. Khole, P. A. Bru‥hwiler, A. Hagfeldt and H. Siegbahn, "The electronic structure of the cis-bis(4,4′-dicarboxy-2,2′-bipyridine)-bis(isothiocyanato) ruthenium(II) complex and its ligand 2,2′-bipyridyl-4,4′-dicarboxylic acid studied with electron spectroscopy" Chem. Phys. Lett. 1997, 274, 51-57.
[55] C. Daul, E. J. Baerends and P. Vernooijs, "A density functional study of the MLCT states of [Ru(bpy)3]2+ in D3 symmetry" Inorg. Chem. 1994, 33, 3538-3553.
[56] J. E. Monat, J. H. Rodriguez and J. K. McCusker, "Ground- and excited-state electronic structures of the solar cell sensitizer bis(4,4’-dicarboxylato-2,2’-bipyridine)bis(isothiocyanato)ruthenium(II)" J. Phys. Chem. A 2002, 106, 7399-7406.
[57] H. Ozawa, T. Kuroda, S. Harada and H. Arakawa, "Efficient ruthenium sensitizer with a terpyridine ligand having a hexylthiophene unit for dye-sensitized solar cells: Effects of the substituent position on the solar cell performance" Eur. J. Inorg. Chem. 2014, 28, 4734-4739.
[58] V. V. Pavlishchuk and A. W. Addison, "Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C" Inorg. Chim. Acta, 2000, 298, 97-102.
[59] R. Katoh, M. Kasuya, S. Kodate, A. Furube, N. Fuke and N. Koide, "Effects of 4-tert-butylpyridine and Li ions on photoinduced electron injection efficiency in black-dye-sensitized nanocrystalline TiO2 films" J. Phys. Chem. C. 2009, 113, 20738-20744.
[60] K. Haraa, T. Nishikawab, M. Kurashigea, H. Kawauchic, T. Kashimac, K. Sayamaa, K. Aikab and H. Arakawa "Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru (II) terpyridyl complex photosensitizer" Sol. Energy Mater. Sol. Cells 2005, 85, 21-30.
[61] Y. Shiac, Y. Wang, M. Zhang and X. Dong, "Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium" Phys. Chem. Chem. Phys. 2011, 13, 14590-14597.
[62] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1):? the case of solar cells using the I-/I3- redox couple" J. Phys. Chem. B. 2005, 109, 3480-3487.
[63] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Dai, "Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability" J. Phys. Chem. C. 2009, 113, 21779-21783.
[64] D. S. H. Chan and J. C. H. Phang, "Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V Characteristics" IEEE Electron device, 1987, 2, 286-293.
[65] P. Piatkowski, C. Martin, M. R. Nunzio, B. Cohen, S. Pandey, S.i Hayse and A. Douhal, "Complete photodynamics of the efficient YD2-o-C8-based solar cell" J. Phys. Chem. C, 2014, 118, 29674-29687.
指導教授 陳家原 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明