博碩士論文 105223026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.214.184.250
姓名 鄭兆軒(Zhao-Xuan Zheng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 電場誘導高導電度TiO2奈米材料高分子複合薄膜於鋰離子電池的應用
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-8-1以後開放)
摘要(中) 鋰離子電池是廣泛使用在電子產品當中的電池,是重要的儲能裝置之一,在發展過程中為了改善安全性及耐用性,固態高分子電解質薄膜成為重要的議題之一。固態高分子電解質雖然有許多的優點,但在離子導電性以及與電極之間的界面相容性還是比傳統的液體電解質差,因此致力於提升離子導電度以及界面相容性就成為固態高分子電解質主要發展的目標。
在本實驗中,我們研究一款新穎的固態電解質,利用離子液體[EMIM]+[FSI]-和TiO2奈米顆粒添加到PVDF-HFP及PMMA混摻高分子薄膜中,並且在浸泡離子液體,在電場極化下,橢圓的TiO2奈米顆粒在高分子非結晶區有序地被誘導成順向,有利於離子更直接的在薄膜中傳導。此外高極性的TiO2奈米顆粒可以有效的減弱離子液體的鍵結,釋放出鋰離子提供更高的運輸程度。因此導電度在室溫下到達1.16×10-3 S/cm,在TiO2奈米顆粒添加至3%並且在80oC下導電度可到達4.52×10-3 S/cm。
儘管此在室溫下的導電度還是不高,但是在電場極化產生的有序排列以及來自TiO2奈米顆粒高介電常數下建立了有利於離子液體傳導離子的機制,結合了電極的PvDF/PMMA黏合性能,介面電阻有顯著的下降,發現使用包含離子液體和TiO2顆粒的固態高分子電解質的鋰電池半電池以及磷酸鋰鐵作為陰極,優異且穩定的循環容量在100圈充電和放電循環後在0.2C下仍然保持在140mAh/g。
摘要(英) Lithium-ion battery is an important energy storage device, widely used in electronic products. In order to improve the durability and safety, solvent free polymer electrolyte becomes one of the critical components to meet the growing challenge. Although with many promising material advantages, solid polymer electrolyte is far inferior to the liquid electrolyte in ion conductivity. A second drawback is the huge interface resistance between the electrolyte and the electrodes, due to the voids created by incomplete adhesion of the two solids.
In this paper, we report a novel solid polymer electrolytes where ionic liquid [EMIM] + [FSI] - and TiO2 nanoparticles were impregnate with polymer blend of PVDF-HFP and PMMA. Under electric field poling, the oval shape TiO2 nano-particles is re-oriented with preferentially ordered arrangement in non-crystalline regions of the polymer blends which served to facilitate fluent ion migration induced in more straight forward manner. Furthermore, high dielectric constant of TiO2 nanoparticles weakens the ionic force within ionic liquid which liberates lithium ion for better transport. Both factors contribute to appreciable increase of ionic conductivity of 1.16 × 10 -3 S / cm at room temperature. In the composite electrolyte samples, ion conductivity of 4.52 × 10 -3 S / cm at 80 °C can be achieved with addition of 3% TiO2 nanoparticles.
Although the mobility of the polymer is still not high at room temperature, the ordered arrangement created by E-F poling, and the high dielectric constants originated from the nano particles establishes favorable ionic liquid conduction mechanism. In combination with the superb PVDF/PMMA adhesion properties with the electrodes, the interface resistance is substantially reduced. Lithium battery half cells using the solid polymer electrolytes containing ionic liquids and TiO2 particles, with lithium iron phosphate as cathode, show stable cyclic capacity maintain at 140 mAh / g at 0.2 C discharge rate, after 100 charged and discharge cycle.
關鍵字(中) ★ 固態電解質 關鍵字(英)
論文目次 摘要 vi
Abstract vii
謝誌 ix
圖目錄 xv
表目錄 xviii
第一章 緒論 1
1-1研究背景 1
1-2鋰離子電池簡介與發展 3
1-3研究動機 7
第二章 文獻回顧 9
2-1全固態電解質 9
2-1-1全固態電解質之發展 9
2-1-2全固態電解質的種類 12
2-1-3全固態電解質的性質 14
2-1-4全固態電解質的傳導機制 16
2-1-5全固態電解質混摻系統的發展 17
2-2 PVDF-HFP及PMMA系統介紹與應用 19
2-2-1聚偏二氟乙烯六氟丙烯(PVDF-HFP) 19
2-2-2聚甲丙烯酸甲酯(PMMA) 21
2-2-3 PVDF-HFP與PMMA混摻系統探討 22
2-3 離子液體 24
2-3-1離子液體簡介與特性 24
2-3-2離子液體在高分子系統內的作用 26
2-4奈米陶瓷材料性質 28
2-4-1奈米陶瓷材料發展與簡介 28
2-4-2奈米陶瓷材料的傳導機制 30
2-4-3奈米陶瓷材料高分子薄膜的應用 31
2-5外加電場的影響 32
2-5-1電場對高分子的影響 32
2-5-2電場對奈米陶瓷材料的影響 32
第三章 實驗方法 34
3-1實驗藥品與儀器 34
3-1-1實驗藥品 34
3-1-2實驗儀器 36
3-2實驗流程和操作 37
3-2-1實驗流程 37
3-2-2鈕扣型半電池的製備 39
第四章 實驗結果與討論 41
4-1電場誘導效應 42
4-2 薄膜結晶性探討 43
4-2-1 電場誘導PVDF-HFP結晶性探討 43
4-2-2 PMMA混摻系統結晶性探討 47
4-2-3離子液體添加之結晶性變化 49
4-3 TiO2添加對系統的影響 53
4-3-1 TiO2添加對薄膜構型的影響 53
4-3-2 TiO2和離子液體的作用力 58
4-3-3 TiO2在薄膜中的分散性 60
4-4薄膜性能以及導電度探討 61
4-4-1熱穩定度 61
4-4-2薄膜離子導電度探討 64
4-5半電池電性測試 67
4-5-1交流阻抗測試 67
4-5-2變速率充放電 70
4-5-3長圈數充放電 72
第五章 結論與未來展望 77
5-1結論 77
5-2未來展望 78
參考文獻 79
參考文獻 1. Harry, K.J., et al., Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nature materials, 2014. 13(1): p. 69.
2. Homewood, P., Fossil Fuels and Emissions Forecast To Continue To Rise – BP Energy Outlook. https://notalotofpeopleknowthat.wordpress.com/2018/02/22/fossil-fuels-and-emissions-forecast-to-continue-to-rise-bp-energy-outlook/, 2018.2.22.
3. Yang, M. and J. Hou, Membranes in lithium ion batteries. Membranes, 2012. 2(3): p. 367-383.
4. Hausbrand, R., et al., Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Materials Science and Engineering: B, 2015. 192: p. 3-25.
5. Wang, Q., et al., Thermal runaway caused fire and explosion of lithium ion battery. Journal of power sources, 2012. 208: p. 210-224.
6. Odziemkowski, M. and D. Irish, An Electrochemical Study of the Reactivity at the Lithium Electrolyte/Bare Lithium Metal Interface I. Purified Electrolytes. Journal of The Electrochemical Society, 1992. 139(11): p. 3063-3074.
7. Tarascon, J.-M., et al., Performance of Bellcore′s plastic rechargeable Li-ion batteries. Solid State Ionics, 1996. 86: p. 49-54.
8. Galiński, M., A. Lewandowski, and I. Stępniak, Ionic liquids as electrolytes. Electrochimica acta, 2006. 51(26): p. 5567-5580.
9. Rajendran, S., O. Mahendran, and T. Mahalingam, Thermal and ionic conductivity studies of plasticized PMMA/PVdF blend polymer electrolytes. European polymer journal, 2002. 38(1): p. 49-55.
10. Long, L., et al., Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A, 2016. 4(26): p. 10038-10069.
11. Song, J., Y. Wang, and C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of Power Sources, 1999. 77(2): p. 183-197.
12. Dias, F.B., L. Plomp, and J.B. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources, 2000. 88(2): p. 169-191.
13. Gadjourova, Z., et al., Ionic conductivity in crystalline polymer electrolytes. Nature, 2001. 412(6846): p. 520.
14. Stephan, A.M., et al., Poly (vinylidene fluoride-hexafluoropropylene)(PVdF-HFP) based composite electrolytes for lithium batteries. European Polymer Journal, 2006. 42(8): p. 1728-1734.
15. Rani, M.U., R. Babu, and S. Rajendran, Conductivity study on PVDF-HFP/PMMA electrolytes for lithium battery applications. International Journal of ChemTech Research, 2013. 5(4): p. 1724-1732.
16. FENTON, D., Complexes of Alkali Metal Ions with Poly (etylene oxide). Polymer, 1973. 14: p. 589.
17. Xu, X., et al., High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics, 2006. 177(26-32): p. 2611-2615.
18. Yao, X., et al., All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. Chinese Physics B, 2015. 25(1): p. 018802.
19. Fergus, J.W., Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources, 2010. 195(15): p. 4554-4569.
20. Fu, X., et al., Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm, 2016. 18(23): p. 4236-4258.
21. Knauth, P., Inorganic solid Li ion conductors: An overview. Solid State Ionics, 2009. 180(14-16): p. 911-916.
22. Meyer, W.H., Polymer electrolytes for lithium‐ion batteries. Advanced materials, 1998. 10(6): p. 439-448.
23. Bachman, J.C., et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews, 2015. 116(1): p. 140-162.
24. Ramesh, S., A. Yahaya, and A. Arof, Miscibility studies of PVC blends (PVC/PMMA and PVC/PEO) based polymer electrolytes. Solid State Ionics, 2002. 148(3-4): p. 483-486.
25. Subramania, A., N.K. Sundaram, and G.V. Kumar, Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications. Journal of power sources, 2006. 153(1): p. 177-182.
26. Ding, Y., et al., The ionic conductivity and mechanical property of electrospun P (VdF-HFP)/PMMA membranes for lithium ion batteries. Journal of membrane science, 2009. 329(1-2): p. 56-59.
27. Nunes-Pereira, J., C. Costa, and S. Lanceros-Méndez, Polymer composites and blends for battery separators: state of the art, challenges and future trends. Journal of Power Sources, 2015. 281: p. 378-398.
28. Xie, H., et al., PVDF-HFP composite polymer electrolyte with excellent electrochemical properties for Li-ion batteries. Journal of Solid State Electrochemistry, 2008. 12(11): p. 1497-1502.
29. Tiwari, V. and G. Srivastava, Effect of thermal processing conditions on the structure and dielectric properties of PVDF films. Journal of Polymer Research, 2014. 21(11): p. 587.
30. Martins, P., A. Lopes, and S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Progress in polymer science, 2014. 39(4): p. 683-706.
31. Rajendran, S., O. Mahendran, and R. Kannan, Lithium ion conduction in plasticized PMMA–PVdF polymer blend electrolytes. Materials chemistry and physics, 2002. 74(1): p. 52-57.
32. Brown, H., et al., Effects of a diblock copolymer on adhesion between immiscible polymers. 1. Polystyrene (PS)-PMMA copolymer between PS and PMMA. Macromolecules, 1993. 26(16): p. 4155-4163.
33. Lin, D.-J., C.-L. Lin, and S.-Y. Guo, Network Nano-Porous Poly (vinylidene fluoride-co-hexafluoropropene) Membranes by Nano-Gelation Assisted phase Separation of Poly (vinylidene fluoride-co-hexafluoropropene)/Poly (methyl methacrylate) Blend Precursor in Toluene. Macromolecules, 2012. 45(21): p. 8824-8832.
34. Seki, S., et al., Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material. Chemical Communications, 2006(5): p. 544-545.
35. Balducci, A., et al., High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 2007. 165(2): p. 922-927.
36. De Souza, R.F., et al., Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochemistry Communications, 2003. 5(8): p. 728-731.
37. Wang, P., et al., Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2003. 125(5): p. 1166-1167.
38. Li, C., et al., Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresource technology, 2010. 101(13): p. 4900-4906.
39. Yang, P., et al., Characterization and properties of ternary P (VdF-HFP)-LiTFSI-EMITFSI ionic liquid polymer electrolytes. Solid State Sciences, 2012. 14(5): p. 598-606.
40. MacFarlane, D.R., et al., Energy applications of ionic liquids. Energy & Environmental Science, 2014. 7(1): p. 232-250.
41. Huddleston, J.G., et al., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green chemistry, 2001. 3(4): p. 156-164.
42. Chaurasia, S., R. Singh, and S. Chandra, Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid,[BMIM][BF4]. The Journal of Physical Chemistry B, 2013. 117(3): p. 897-906.
43. Ye, Y.-S., J. Rick, and B.-J. Hwang, Ionic liquid polymer electrolytes. Journal of Materials Chemistry A, 2013. 1(8): p. 2719-2743.
44. Wu, C., et al., Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. The Journal of Physical Chemistry B, 2006. 110(36): p. 17806-17812.
45. Ray, P.C., Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chemical reviews, 2010. 110(9): p. 5332-5365.
46. Zhou, Z.-Y., et al., Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chemical Society Reviews, 2011. 40(7): p. 4167-4185.
47. Walkey, C.D., et al., Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. Journal of the American Chemical Society, 2012. 134(4): p. 2139-2147.
48. Weston, J. and B. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics, 1982. 7(1): p. 75-79.
49. Ohta, N., et al., Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification. Advanced Materials, 2006. 18(17): p. 2226-2229.
50. Chiang, C.-Y., M.J. Reddy, and P.P. Chu, Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ionics, 2004. 175(1-4): p. 631-635.
51. Cao, J., et al., In situ prepared nano-crystalline TiO 2–poly (methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. Journal of Materials Chemistry A, 2013. 1(19): p. 5955-5961.
52. Palmero, P., Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods. Nanomaterials, 2015. 5(2): p. 656-696.
53. Srivastava, S., et al., 25th anniversary article: polymer–particle composites: phase stability and applications in electrochemical energy storage. Advanced Materials, 2014. 26(2): p. 201-234.
54. Capiglia, C., et al., Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly (ethylene oxide)(PEO)-based polymer electrolytes. Solid State Ionics, 1999. 118(1-2): p. 73-79.
55. Forsyth, M., et al., The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ionics, 2002. 147(3-4): p. 203-211.
56. Pitawala, H., M. Dissanayake, and V. Seneviratne, Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO) 9LiTf. Solid State Ionics, 2007. 178(13-14): p. 885-888.
57. Croce, F., L. Settimi, and B. Scrosati, Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochemistry communications, 2006. 8(2): p. 364-368.
58. Cong, H., et al., Carbon nanotube composite membranes of brominated poly (2, 6-diphenyl-1, 4-phenylene oxide) for gas separation. Journal of Membrane Science, 2007. 294(1-2): p. 178-185.
59. Sun, J., et al., Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell biology and toxicology, 2011. 27(5): p. 333-342.
60. Badwal, S., Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics, 1992. 52(1-3): p. 23-32.
61. Wegener, M., et al., Ferroelectric polarization in stretched piezo-and pyroelectric poly (vinylidene fluoride-hexafluoropropylene) copolymer films. Journal of applied physics, 2002. 92(12): p. 7442-7447.
62. Choi, J.-H., et al., Network structure and strong microphase separation for high ion conductivity in polymerized ionic liquid block copolymers. Macromolecules, 2013. 46(13): p. 5290-5300.
63. Liu, W., et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nature energy, 2017. 2(5): p. 17035.
64. Wegener, M., Electrical Poling of Polymers. https://www.uni-potsdam.de/u/physik/fprakti/ANLEIF10.pdf, 2002.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2018-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明