博碩士論文 105223041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.191.181.191
姓名 楊國川(Guo-Chuan Yang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides
(Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 自然界中,纖維素是植物細胞壁的主要成分,是世界上含量最多的生物質來源。由於纖維素在植物體中扮演支撐及保護的角色,其多半以晶型的狀態存在於大自然中,形成堅硬有韌性的結構。在工業界中,此晶型的特性使得酸觸媒難以進入纖維素結構內進行降解,因而大幅度地降低了觸媒降解纖維素的效力。因而自製非晶型纖維素被視為有效的解決方法。此研究中利用X光粉末繞射儀與膠體滲透層析儀來鑑定纖維素在水解反應後的固體產物。利用X光粉末繞射儀,我們發現非晶型纖維素在低酸下水解時有再結晶化的現象,其結晶強度隨著溫度反應溫度上升會又上升的趨勢。另一方面,從膠體滲透層析儀的鑑定結果,我們發現雖然纖維素分子量會因反應溫度上升而下降,但當溫度介170 oC到210oC時,分子量分布卻落於6,500Da左右,沒有明顯下降的趨勢。從以上的觀察,我們得到纖維素再結晶化的確是阻礙纖維素降解的原因之一。
此外,晶體纖維素有著四種同質異型(allomorphs)的型態,在X光粉末繞射圖譜的觀測下,我們發現,反應溫度可能是影響一型纖維素及二型纖維素生成的最大因素。此發現可帶領我們開啟下一階段關於纖維素同質異型的研究。
摘要(英) In this study, recrystallization of amorphous cellulose has been discovered in the homogeneous hydrolytic depolymerization with relatively high saccharide concentration (2.5 wt%) and low catalytic ratio for acidic hydrolysis (4.87 mol%) at various reaction temperatures. The cellulosic residues collected after aforementioned acid hydrolysis were characterized by powder X-ray diffraction (PXRD) as well as gel-permeation chromatography (GPC). The PXRD study revealed the trend of structural transformation for amorphous cellulose to recrystallized cellulose escalated during hydrolysis, while elevating reaction temperature from 130oC to 210oC. In addition, GPC study suggested that weight average molecular mass (Mw) centering around 6,500 Da exhibited similar distribution after hydrolytic depolymerization while elevating reaction temperature from 170oC-210oC. These observations above indicated that recrystallization of amorphous cellulose indeed took place to impede the depolymerization during acid hydrolysis. In addition, judging from the correlation between the average molecular weight and the crystallinity index of recrystallized amorphous polysaccharides, we have found that shorter cellulosic polymer exhibited higher degree of recrystallization during hydrolytic depolymerization which might lead to understand better to design efficient catalysts for hydrolytic depolymerization of polysaccharides in the future. On the other hand, the dynamic study of the hydrolysis of amorphous cellulose shows that both cellulose I and cellulose II have their own preferable forming condition, from which we found that controlling the reaction temperature might play a key role to produce a single allomorph of cellulose. This might lead us to study further about the kinetics and thermodynamics behind the formation of the allomorphs of cellulose.
關鍵字(中) ★ 膠體滲透層析儀
★ 纖維素
★ 再結晶化
關鍵字(英) ★ Gel-permeation chromatography
★ Cellulose
★ Recrystallization
論文目次 摘要 i
Abstract ii
誌謝 iii
Table of Content iv
List of Figures v
1 Introduction 1
1-1 Cellulose 1
1-2 Cellulose molecular structure and amphiphilic properties 2
1-3 Cellulose allomorphs 3
1-4 Hydrolysis of cellulose and the leveling-off degree of polymerization (LODP) 4
2 Experimental 5
2-1 Materials 5
2-2 Preparation of amorphous cellulose derived from the microcrystalline cellulose (PH-101) 5
2-3 Hydrolysis of cellulose 6
2-4 Size exclusion chromatography 6
2-4-1 The dissolution of cellulose using solvent exchange method 6
2-4-2 Advance permeation chromatography (APC) 8
2-5 Powder X-ray diffraction 11
2-5-1 Parameters 11
2-5-2 The principle of PXRD measurement 12
2-6 High performance liquid chromatography 15
3 Result and discussion 16
3-1 Recrystallization of polysaccharides found as an inhibitor to hydrolytic depolymerization of cellulose 16
3-2 Study cellulose allomorphs over the reaction dynamics 28
4 Conclusions 36
Reference 37
Supplementary 41
參考文獻 1. Dumitriu, S., Polysaccharides: Structural Diversity and Functional Versatility 2nd ed.; Marcel Dekker: New York, 2005.
2. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J., Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011, 40 (7), 3941-94.
3. Fox, S. C.; Li, B.; Xu, D.; Edgar, K. J., Regioselective Esterification and Etherification of Cellulose: A Review. Biomacromolecules 2011, 12 (6), 1956-1972.
4. Glasser, W. G., 6. Prospects for future applications of cellulose acetate. Macromolecular Symposia 2004, 208 (1), 371-394.
5. Plackett, D.; Hansen, N., Polysaccharide Building Blocks: A Sustainable Approach to the Development of Renewable Biomaterials. 2012; p 387-408.
6. Zhong, R.; Yu, F.; Schutyser, W.; Liao, Y.; de Clippel, F.; Peng, L.; Sels, B. F., Acidic mesostructured silica-carbon nanocomposite catalysts for biofuels and chemicals synthesis from sugars in alcoholic solutions. Applied Catalysis B: Environmental 2017, 206, 74-88.
7. Bertran, M. S.; Dale, B. E., Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose. Biotechnology and Bioengineering 1985, 27 (2), 177-181.
8. Dumitriu, S., Polysaccharides: Structural Diversity and Functional Versatility 2nd ed.; Marcel Dekker: New York, 2005; p 70.
9. Lee, H.; Abd Hamid, S. B.; K Zain, S., Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. 2014; Vol. 2014, p 631013.
10. Medronho, B.; Lindman, B., Competing forces during cellulose dissolution: From solvents to mechanisms. Current Opinion in Colloid & Interface Science 2014, 19 (1), 32-40.
11. Medronho, B.; Romano, A.; Miguel, M. G.; Stigsson, L.; Lindman, B., Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 2012, 19 (3), 581-587.
12. Lindman, B.; Karlström, G.; Stigsson, L., On the mechanism of dissolution of cellulose. Journal of Molecular Liquids 2010, 156 (1), 76-81.
13. Dumitriu, S., Polysaccharides: Structural Diversity and Functional Versatility 2nd ed.; Marcel Dekker: New York, 2005; p 71.
14. Lee, C. M.; Mittal, A.; Barnette, A. L.; Kafle, K.; Park, Y. B.; Shin, H.; Johnson, D. K.; Park, S.; Kim, S. H., Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 2013, 20 (3), 991-1000.
15. Uto, T.; Mawatari, S.; Yui, T., Theoretical study of the structural stability of molecular chain sheet models of cellulose crystal allomorphs. J Phys Chem B 2014, 118 (31), 9313-21.
16. Beckham, G. T.; Matthews, J. F.; Peters, B.; Bomble, Y. J.; Himmel, M. E.; Crowley, M. F., Molecular-level origins of biomass recalcitrance: decrystallization free energies for four common cellulose polymorphs. J Phys Chem B 2011, 115 (14), 4118-27.
17. Kroon-Batenburg, L. M. J.; Bouma, B.; Kroon, J., Stability of Cellulose Structures Studied by MD Simulations. Could Mercerized Cellulose II Be Parallel? Macromolecules 1996, 29 (17), 5695-5699.
18. Sebe, G.; Ham-Pichavant, F.; Ibarboure, E.; Koffi, A. L.; Tingaut, P., Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 2012, 13 (2), 570-8.
19. Yamane, C.; Miyamoto, H.; Hayakawa, D.; Ueda, K., Folded-chain structure of cellulose II suggested by molecular dynamics simulation. Carbohydr Res 2013, 379, 30-7.
20. Mukarakate, C.; Mittal, A.; Ciesielski, P. N.; Budhi, S.; Thompson, L.; Iisa, K.; Nimlos, M. R.; Donohoe, B. S., Influence of Crystal Allomorph and Crystallinity on the Products and Behavior of Cellulose during Fast Pyrolysis. ACS Sustainable Chemistry & Engineering 2016, 4 (9), 4662-4674.
21. Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J., Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 2012, 90 (2), 735-64.
22. Jin, E.; Guo, J.; Yang, F.; Zhu, Y.; Song, J.; Jin, Y.; Rojas, O. J., On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 2016, 143, 327-35.
23. Wadehra, I. L.; Manley, R. S. J., Recrystallization of amorphous cellulose. Journal of applied polymer science 1965, 9 (7), 2627-2630.
24. Bertran, M. S.; Dale, B. E., Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose. Biotechnology and Bioengineering 1985, XXVII, , 177-181.
25. Kontturi, E.; Meriluoto, A.; Penttila, P. A.; Baccile, N.; Malho, J. M.; Potthast, A.; Rosenau, T.; Ruokolainen, J.; Serimaa, R.; Laine, J.; Sixta, H., Degradation and Crystallization of Cellulose in Hydrogen Chloride Vapor for High-Yield Isolation of Cellulose Nanocrystals. Angew Chem Int Ed Engl 2016, 55 (46), 14455-14458.
26. Charmot, A.; Chung, P.-W.; Katz, A., Catalytic Hydrolysis of Cellulose to Glucose Using Weak-Acid Surface Sites on Postsynthetically Modified Carbon. ACS Sustainable Chemistry & Engineering 2014, 2 (12), 2866-2872.
27. Chen, G.; Wang, X.; Jiang, Y.; Mu, X.; Liu, H., Insights into the Inhibition of Acidic Hydrolysis of Cellulose by Its Solation. ACS Sustainable Chemistry & Engineering 2018, 6 (8), 10999-11007.
28. Chung, P. W.; Charmot, A.; Gazit, O. M.; Katz, A., Glucan adsorption on mesoporous carbon nanoparticles: effect of chain length and internal surface. Langmuir 2012, 28 (43), 15222-32.
29. Palme, A.; Theliander, H.; Brelid, H., Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose. Carbohydr Polym 2016, 136, 1281-7.
30. Gurgel, L. V. A.; Marabezi, K.; Ramos, L. A.; Curvelo, A. A. d. S., Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: Effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Industrial Crops and Products 2012, 36 (1), 560-571.
31. Hakansson, H.; Ahlgren, P., Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 2005, 12 (2), 177-183.
32. Zhang, C.; Liu, R.; Xiang, J.; Kang, H.; Liu, Z.; Huang, Y., Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 2014, 118 (31), 9507-14.
33. Dupont, A.-L., Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 2003, 44 (15), 4117-4126.
34. Park, S.; Baker, J. O.; Himmel, M. E.; Parilla, P. A.; Johnson, D. K., Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 2010, 3, 10.
35. Flauzino Neto, W. P.; Putaux, J.-L.; Mariano, M.; Ogawa, Y.; Otaguro, H.; Pasquini, D.; Dufresne, A., Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Advances 2016, 6 (79), 76017-76027.
36. Battista, O. A., Hydrolysis and Crystallization of Cellulose. Industrial & Engineering Chemistry 1950, 42 (3).
37. Goldberg, R. N.; Schliesser, J.; Mittal, A.; Decker, S. R.; Santos, A. F. L. O. M.; Freitas, V. L. S.; Urbas, A.; Lang, B. E.; Heiss, C.; Ribeiro da Silva, M. D. M. C.; Woodfield, B. F.; Katahira, R.; Wang, W.; Johnson, D. K., A thermodynamic investigation of the cellulose allomorphs: Cellulose(am), cellulose Iβ(cr), cellulose II(cr), and cellulose III(cr). The Journal of Chemical Thermodynamics 2015, 81, 184-226.
38. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. http://devafdc.nrel.gov/pdfs/9572.pdf. Laboratory Analytical Procedure (LAP); NREL: 2008.
指導教授 鍾博文 謝發坤(Po-Wen Chung Fa-Kuen Shieh) 審核日期 2018-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明