博碩士論文 105223049 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:
姓名 方意雯(Yi-Wen Fang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以蛋白質體學探討在大腸桿菌中甲醇利用代謝途徑
(Proteomics Investigation on the Methanol Utilization Metabolism in Escherichia coli)
★ Data-independent acquisition mass spectrometry analysis for identification of cerebrospinal fluid biomarker of reversible cerebral vasoconstriction syndrome
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 『生質燃料』是一種是可以經由糖質、澱粉和纖維素轉換形成的低成本燃料,近年來已成為一具有潛力的再生能源。甲醇可作為其生產原物料之一,由天然氣轉換生成,屬於非食物競爭性的替代原物料,已被廣應用於生質能源的發展。在過去幾十年中,利用基因工程以甲基營養菌為載體,在大腸桿菌中使甲醇透過生物轉換,可以合成較高能量含量的醇類,如:乙醇和丁醇。然而,在生產含碳量較高之生質然料的同時,微生物系統如何應對與適應來自外源性的壓力,其調控機制仍未被清楚的研究與了解。在本研究中,利用質譜技術與定量蛋白質體學,分析大腸桿菌於製造生質燃料時,細胞生長與燃料產能如何受到影響與調控。
在實驗設計I中,我們以串聯質譜標籤(TMT)同位素標記技術分析基因改造大腸桿菌蛋白質體在生產丁醇過程隨著時間的變化,共可鑑定出2,268個蛋白質,在2,200個可定量的蛋白質中,大約20%的蛋白質會隨著時間表現量上升,包括 440個蛋白與蛋白質或小分子運輸相關,推測在大腸桿菌中,將具生物毒性的代謝物(如:甲醛與丁醇)與化合物排出體外,可作為對抗外源性生物燃料毒性策略之一。此外,超過50%的蛋白質表現量會隨時間下降,多與蛋白質轉譯功能、能量生產之三羧酸循環與胺基酸生合成相關,藉此可猜測細胞可能已失去蛋白質製造功能,甚至隨時間趨於死亡。同時,我們也鑑定到多種蛋白質經代謝物的化學修飾,如:甲醛(44個)、甲基乙二醛(69個)、核酮醣-5-磷酸(Ru5P, 26個)、赤鮮醣-4-磷酸(E4P, 36個)、景天庚酮醣-7-磷酸(S7P, 18個)。其中,甲醛和甲基乙二醛所造成的化學修飾隨著時間增加,表示當高濃度的代謝物累積於細菌細胞內,會對蛋白質進行化學修飾,可能影響蛋白質的結構與活性,導致細胞死亡與產能下降。
摘要(英) Biofuel, a low-cost alternative fuel converted from sugar, starch, and cellulose, has become a potential and renewable biomass in recent years. Methanol is a non-food substitute resource and a sustainable product from natural gas. The biological conversion of methanol to higher energy content alcohols, such as ethanol and butanol, using biological engineering methylotrophic bacteria has been successfully reported in the past decades. An auxotrophic strain of Escherichia coli (E. coli) that can take methanol as growth nutrition and produce ethanol and butanol has been established. However, the mechanism on how microbial host platforms respond or adapt to the exogenous stress of multiple carbon stress remains unknown. In this study, mass spectrometry-based quantitative proteomic analysis was applied to identify the contributing factors and mechanism for biofuel production in E. coli.
In the first study, we applied a TMT isobaric labeling strategy to analyze the differential protein expression during the time course of butanol production in the engineered E. coli strain. Among a total of identified 2,268 proteins and 2,200 quantified proteins, about 20% of proteins showed up-regulated expression, which are enriched in functional categories related to export and transport. The result suggests that the mechanism of exporting toxic compounds was activated to tolerate the toxicity from exogenous biofuel. Besides, more than 50% of proteins were down-regulated and they are related to protein translation, tricarboxylic acid cycle, biosynthetic process, which may be due to cell death or severe loss of protein production machinery. Extensive protein modifications were observed and modification degree increased with time, including formylation (44 proteins), methylglyoxalation (69 proteins), ribulosamine-5-phosphate (Ru5P, 26 proteins), erythrulosamine-4-phosphate (E4P, 36 proteins), and sedoheptulosamine-7-phosphate (S7P, 18 proteins), which metabolic modification may likely affect protein structure and enzyme activity.
To further study the effect of butanol production to cause extensive modification, we analyzed the E. coli strain without butanol production; a total of 2,358 proteins were identified and 2,224 proteins are quantified. About 20% of proteins were down-regulated and involved in sulfate related metabolism pathway, such as cysteine/methionine and selenoamino acid metabolism. Especially, methionine is the universal message for a ribosome that signals the initiation of protein translation.These suggested either the translation initiation was blocked or newly translated proteins were degraded. In addition, only 9% of proteins showed up-regulation and annotated as cell membrane transporter. The result showed that the mechanism of toxins exporting was activated in absence of butanol. In butanol production defected system, our result show that E4P and erythrulosamine were the most abundant modification, which may be due to accumulation of E4P metabolites in RuMP pathway when methanol was supplied as nutrient resource. Therefore, high concentration of butanol is toxic to microbe and formaldehyde can lead to damage for enzyme structure and activity, following decreased the cell viability and production efficiency.
In summary, the low tolerance of formaldehyde and butanol may limit the engineered metabolic pathways for biofuel production in E. coli. Efficient control of toxin compound through cellular export systems can enhance resistance of solvent toxicity and improve cell viability. Here, the proteomics and bioinformatics reveal the molecular mechanism on biofuel tolerance problem and may provide new insight to reduce solvent/chemical toxicity for next-generation biofuel manufacture.
關鍵字(中) ★ 生質燃料
★ RuMP代謝路徑
★ 溶劑耐受度
★ 定量蛋白質體學
關鍵字(英) ★ Biofuel
★ RuMP pathway
★ solvent tolerance
★ quantitative proteomics
論文目次 Table of Contents
中文摘要 i
Abstract iii
Table of Contents v
List of Figures vii
1. Introduction 1
1.1 Economic and environmental benefits of the biofuel 1
1.2 The generations and dilemma of biofuel production 1
1.3 Utilizing metabolic pathway for bioconversion of methane and methanol 3
1.4 The characteristic and superiority of butanol as biofuels 3
1.5 Challenges of engineering microbial for biofuel production 4
1.6 The proteomics approach characterizes the metabolic responses in Escherichia coli during biofuel production 5
1.7 Hypothesis and Objective 5
2. Materials and Methods 7
2.1 Materials and chemical reagent 7
2.1.2 Apparatus 7
2.2 Sample preparation for LC-MS/MS 8
2.2.1 Total protein extraction of E. coli 8
2.2.2 BCATM protein assay Kit 8
2.2.3 Reduction, alkylation and In-solution digestion 9
2.2.4 Desalting with C18-beads Stage-Tip 9
2.2.5 Tandem Mass Tags (TMTs) isobaric chemical labeling 10
2.2.6 High pH reversed-phase peptide fractionation 10
2.2.7 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis 11
2.3 Data process and analysis 11
2.3.1 Database search and quantification 11
2.3.2 Relative quantitative strategy in an isobaric labeling tandem mass tag (TMT) 12
2.3.3 Statistics and bioinformatics analysis 13
3. Results and Discussion 14
3.1 Butanol production in synthetic methanol auxotrophic E. coli system 14
3.1.1 Engineered E. coli produce butanol through RuMP Pathway 14
3.2 Quantitative analysis of E. coli proteome during butanol production through engineered RuMP pathway 15
3.3 Analysis of chemical modification by metabolites produced in RuMP pathway 18
3.3.2 Identification of formylation and methylglyoxalation for enzymes in RuMP pathway 20
3.3.3 Enrichment of function and pathway of metabolically modified proteins 21
3.4 Investigate the alteration of protein expression and modification in the engineered RuMP pathway without butanol generating ability 22
3.4.1 Bioinformatics analysis of differentially regulated protein in engineered RuMP pathway without butanol production ability 24
3.4.2 Bioinformatics analysis of chemically modified proteins by metabolites in RuMP pathway in butanol absent system 25
3.4.3 Comparison of protein expression and metabolic modifications between butanol synthesis and its absence in RuMP pathway 26
3.4.4 Proteomics result identify protein candidates for improvement of solvent tolerance and biofuel production efficiency 27
4. Conclusions 30
Reference 32
Supplementary Figure 56
Supplementary Table 61
Appendix 64
參考文獻 1. Dellomonaco, C.; Fava, F.; Gonzalez, R., The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact 2010, 9, 3.
2. Jarboe, L. R.; Grabar, T. B.; Yomano, L. P.; Shanmugan, K. T.; Ingram, L. O., Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 2007, 108, 237-61.
3. Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D., Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 2006, 103 (30), 11206-10.
4. Ramos, J. L.; Valdivia, M.; Garcia-Lorente, F.; Segura, A., Benefits and perspectives on the use of biofuels. Microb Biotechnol 2016, 9 (4), 436-440.
5. Elshahed, M. S., Microbiological aspects of biofuel production: current status and future directions. J Adv Res 2010.
6. Hannon, M.; Gimpel, J.; Tran, M.; Rasala, B.; Mayfield, S., Biofuels from algae: challenges and potential. Biofuels 2010, 1 (5), 763-784.
7. Alper, H.; Stephanopoulos, G., Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 2009, 7 (10), 715-23.
8. Buijs, N. A.; Siewers, V.; Nielsen, J., Advanced biofuel production by the yeast Saccharomyces cerevisiae. Current Opinion in Chemical Biology 2013, 17 (3), 480-488.
9. Lin, Y.; Tanaka, S., Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 2006, 69 (6), 627-42.
10. Mohd Azhar, S. H.; Abdulla, R.; Jambo, S. A.; Marbawi, H.; Gansau, J. A.; Mohd Faik, A. A.; Rodrigues, K. F., Yeasts in sustainable bioethanol production: A review. Biochem Biophys Rep 2017, 10, 52-61.
11. Wang, C. L.; Pfleger, B. F.; Kim, S. W., Reassessing Escherichia coli as a cell factory for biofuel production. Curr Opin Biotech 2017, 45, 92-103.
12. Kalyuzhnaya, M. G.; Puri, A. W.; Lidstrom, M. E., Metabolic engineering in methanotrophic bacteria. Metab Eng 2015, 29, 142-52.
13. Humphreys, C. M.; Minton, N. P., Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Curr Opin Biotechnol 2018, 50, 174-181.
14. Liao, J. C.; Mi, L.; Pontrelli, S.; Luo, S., Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 2016, 14 (5), 288-304.
15. Bogorad, I. W.; Chen, C. T.; Theisen, M. K.; Wu, T. Y.; Schlenz, A. R.; Lam, A. T.; Liao, J. C., Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. P Natl Acad Sci USA 2014, 111 (45), 15928-15933.
16. Whitaker, W. B.; Jones, J. A.; Bennett, R. K.; Gonzalez, J. E.; Vernacchio, V. R.; Collins, S. M.; Palmer, M. A.; Schmidt, S.; Antoniewicz, M. R.; Koffas, M. A.; Papoutsakis, E. T., Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab Eng 2017, 39, 49-59.
17. Whitaker, W. B.; Sandoval, N. R.; Bennett, R. K.; Fast, A. G.; Papoutsakis, E. T., Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr Opin Biotechnol 2015, 33, 165-75.
18. Muller, J. E.; Meyer, F.; Litsanov, B.; Kiefer, P.; Potthoff, E.; Heux, S.; Quax, W. J.; Wendisch, V. F.; Brautaset, T.; Portais, J. C.; Vorholt, J. A., Engineering Escherichia coli for methanol conversion. Metab Eng 2015, 28, 190-201.
19. Fei, Q.; Guarnieri, M. T.; Tao, L.; Laurens, L. M.; Dowe, N.; Pienkos, P. T., Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 2014, 32 (3), 596-614.
20. Lee, O. K.; Hur, D. H.; Nguyen, D. T. N.; Lee, E. Y., Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane. Biofuel Bioprod Bior 2016, 10 (6), 848-863.
21. Hwang, I. Y.; Nguyen, A. D.; Nguyen, T. T.; Nguyen, L. T.; Lee, O. K.; Lee, E. Y., Biological conversion of methane to chemicals and fuels: technical challenges and issues. Appl Microbiol Biotechnol 2018, 102 (7), 3071-3080.
22. Durre, P., Biobutanol: an attractive biofuel. Biotechnol J 2007, 2 (12), 1525-34.
23. Haynes, C. A.; Gonzalez, R., Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 2014, 10 (5), 331-9.
24. Bogorad, I. W.; Lin, T. S.; Liao, J. C., Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 2013, 502 (7473), 693-7.
25. Jin, H.; Chen, L.; Wang, J.; Zhang, W., Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol Adv 2014, 32 (2), 541-8.
26. Garcia, V.; Pakkila, J.; Ojamo, H.; Muurinen, E.; Keiski, R. L., Challenges in biobutanol production: How to improve the efficiency? Renew Sust Energ Rev 2011, 15 (2), 964-980.
27. Raut, M. P.; Couto, N.; Pham, T. K.; Evans, C.; Noirel, J.; Wright, P. C., Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 2016, 9, 113.
28. Tian, X. X.; Chen, L.; Wang, J. X.; Qiao, J. J.; Zhang, W. W., Quantitative proteomics reveals dynamic responses of Synechocystis sp PCC 6803 to next-generation biofuel butanol. Journal of Proteomics 2013, 78, 326-345.
29. Huffer, S.; Roche, C. M.; Blanch, H. W.; Clark, D. S., Escherichia coli for biofuel production: bridging the gap from promise to practice. Trends Biotechnol 2012, 30 (10), 538-45.
30. Mills, T. Y.; Sandoval, N. R.; Gill, R. T., Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2009, 2, 26.
31. Dunlop, M. J.; Dossani, Z. Y.; Szmidt, H. L.; Chu, H. C.; Lee, T. S.; Keasling, J. D.; Hadi, M. Z.; Mukhopadhyay, A., Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 2011, 7.
32. Clomburg, J. M.; Gonzalez, R., Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biot 2010, 86 (2), 419-434.
33. Koppolu, V.; Vasigala, V. K., Role of Escherichia coli in Biofuel Production. Microbiol Insights 2016, 9, 29-35.
34. Rauniyar, N.; Yates, J. R., 3rd, Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res 2014, 13 (12), 5293-309.
35. Thompson, A.; Schafer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Johnstone, R.; Mohammed, A. K.; Hamon, C., Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 2003, 75 (8), 1895-904.
36. Arifuzzaman, M.; Maeda, M.; Itoh, A.; Nishikata, K.; Takita, C.; Saito, R.; Ara, T.; Nakahigashi, K.; Huang, H. C.; Hirai, A.; Tsuzuki, K.; Nakamura, S.; Altaf-Ul-Amin, M.; Oshima, T.; Baba, T.; Yamamoto, N.; Kawamura, T.; Ioka-Nakamichi, T.; Kitagawa, M.; Tomita, M.; Kanaya, S.; Wada, C.; Mori, H., Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res 2006, 16 (5), 686-691.
37. Rigbolt, K. T.; Vanselow, J. T.; Blagoev, B., GProX, a user-friendly platform for bioinformatics analysis and visualization of quantitative proteomics data. Mol Cell Proteomics 2011, 10 (8), O110 007450.
38. Dong, H.; Zhao, C.; Zhang, T.; Lin, Z.; Li, Y.; Zhang, Y., Engineering Escherichia coli Cell Factories for n-Butanol Production. Adv Biochem Eng Biotechnol 2016, 155, 141-63.
39. Reyes, L. H.; Almario, M. P.; Kao, K. C., Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One 2011, 6 (3), e17678.
40. Deppe, V. M.; Bongaerts, J.; O′Connell, T.; Maurer, K. H.; Meinhardt, F., Enzymatic deglycation of Amadori products in bacteria: mechanisms, occurrence and physiological functions. Appl Microbiol Biotechnol 2011, 90 (2), 399-406.
41. Wisniewski, J. R.; Zougman, A.; Mann, M., Nepsilon-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res 2008, 36 (2), 570-7.
42. Lee, S., Post-translational modification of proteins in toxicological research: focus on lysine acylation. Toxicol Res 2013, 29 (2), 81-6.
43. Van Schaftingen, E.; Collard, F.; Wiame, E.; Veiga-da-Cunha, M., Enzymatic repair of Amadori products. Amino Acids 2012, 42 (4), 1143-50.
44. Sousa Silva, M.; Gomes, R. A.; Ferreira, A. E.; Ponces Freire, A.; Cordeiro, C., The glyoxalase pathway: the first hundred years... and beyond. Biochem J 2013, 453 (1), 1-15.
45. Chen, N. H.; Djoko, K. Y.; Veyrier, F. J.; McEwan, A. G., Formaldehyde Stress Responses in Bacterial Pathogens. Front Microbiol 2016, 7, 257.
46. Ferguson, G. P.; Totemeyer, S.; MacLean, M. J.; Booth, I. R., Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol 1998, 170 (4), 209-18.
47. Foo, J. L.; Jensen, H. M.; Dahl, R. H.; George, K.; Keasling, J. D.; Lee, T. S.; Leong, S.; Mukhopadhyay, A., Improving Microbial Biogasoline Production in Escherichia coli Using Tolerance Engineering. Mbio 2014, 5 (6).
48. Rutherford, B. J.; Dahl, R. H.; Price, R. E.; Szmidt, H. L.; Benke, P. I.; Mukhopadhyay, A.; Keasling, J. D., Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 2010, 76 (6), 1935-45.
49. Dunlop, M. J., Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 2011, 4.
50. Sekowska, A.; Kung, H. F.; Danchin, A., Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2000, 2 (2), 145-77.
51. Mukhopadhyay, A., Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 2015, 23 (8), 498-508.
指導教授 陳玉如 侯敦仁(Yu-Ju Chen Duen-Ren Hou) 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明