博碩士論文 105225010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:52.205.167.104
姓名 吳柏寬(Bo-Kuan Wu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(Empirical Evidences for Correlated Defaults)
相關論文
★ SABR模型下使用遠期及選擇權資料的參數估計★ 台灣指數上的股價報酬預測性
★ 台灣股票在alpha-TEV frontier上的投資組合探討與推廣★ On Jump Risk of Liquidation in Limit Order Book
★ 結構型商品之創新、評價與分析★ 具有厚尾殘差下 有效地可預測性檢定
★ A Dynamic Rebalancing Strategy for Portfolio Allocation★ A Multivariate Markov Switching Model for Portfolio Optimization
★ 漸進最佳變點偵測在金融科技網路安全之分析★ Reducing forecasting error under hidden markov model by recurrent neural networks
★ 金融市場結構轉換次數的偵測★ 重點重覆抽樣下拔靴法估計風險值-以台泥華碩股票為例
★ 在DVEC-GARCH模型下風險值的計算與實證研究★ 資產不對稱性波動參數的誤差估計與探討
★ 公司營運狀況與員工股票選擇權之關係★ 結合買權改進IGARCH模型之參數估計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著2007 年金融危機的過去,信用風險管理在各大金融機構中逐漸成為一個重要的議題。Duffie (2011) 提出了相關違約具有三種特性,分別是共同影響性,傳染性以及違約後重要資訊的釋出。Fuh and Kao (2017) 使用因子模型去捕捉三種特性並且給出相對應的多維違約距離。為了研究公司之間的相關性,本研究使用Fuh and Kao (2017) 所提出的因子模型去捕捉公司之間的相關性並且計算出相關性矩陣。同時也使用美國市場資料計算出相關性矩陣以及多維違約距離。為了觀察違約前後的相關性是否有變化,本研究把市場資料依照時間分成兩塊。
從實際資料所算出的相關性矩陣可以發現公司規模較大的公司不容易受到其他公司違約的影響; 反之,公司規模較小的公司較容易受到其他公司違約的影響。此外我們可以從相關性矩陣明顯的強弱區分公司規模較大的公司與公司規模較小的公司。最後,我們利用美國市場資料計算出多維違約距離和違約機率。從多維違約距離來看,我們發現相關違約中的傳染性確實會影響其他公司,然而公司的財務狀況以及市場波動也有一定的影響力存在。
摘要(英) After financial crisis in 2007, the credit risk management has became one of the important
issues around the financial institutions. In Duffie (2011), there are several features of correlated default between each firm, namely co-movement, contagion, and information
release. Fuh and Kao (2017) use the commonly factor model to capture those features and proposed three types of multi-name Distance-to-Default. In order to study the correlation between each firm, we use factor model which propose by Fuh and Kao (2017) to capture the correlation and calculate the variance-covariance matrix. Using the US financial data, we calculate the variance-covariance matrix and multi-name Distance-to-Default. We also separate our data to observe the different of the correlation of between each firm before and after firm default.
From the correlation matrix based on empirical data, we can find that the firm with high firm-value is not easily influenced from other firm default and the firm with low firmvalue is easily influenced from other firm default. In addition, we also observe that we can easily distinguish the firm with high and low firm-value from the color of correlation matrix. Based on multi-name Distance-to-Default, we can discover that the default event have an impact on other firms in same industry sector. However, the default probability of other firms are also affected from the financial state of itself or the fluctuation of financial market.
關鍵字(中) ★ 信用風險
★ 因子模型
★ 違約距離
關鍵字(英) ★ Credit Risk
★ Factor Model
★ Distance-to-Default
論文目次 摘要 i
Abstract ii
誌謝 iii
Contents iv
1 Introduction 1
2 Credit Risk 3
2.1 The Merton’s Structural Form Model 4
2.2 Correlated Defaults 6
2.3 Factor Model 7
3 Methodology 9
3.1 Model Setting 9
3.2 Parameter Estimation 11
4 Empirical Study 13
4.1 Data 13
4.2 Data Analysis 15
4.2.1 Energy Sector 15
4.2.2 Industrials Sector 22
4.2.3 Information Technology Sector 28
4.2.4 Materials Sector 35
5 Conclusion 42
References 43
參考文獻 [1] Black, Fischer and John C Cox (1976). “Valuing corporate securities: Some effects of bond indenture provisions”. In: The Journal of Finance 31.2, pp. 351–367.

[2] Das, Sanjiv Ranjan. et al. (2006). “Correlated Default Risk”. In: The Journal of FixedIncome 16.2, pp. 7–32.

[3] Duffie, Darrell (2011). Measuring corporate default risk. Oxford University Press.

[4] Duffie, Darrell and Nicolae Garleanu (2001). “Risk and valuation of collateralized debt
obligations”. In: Financial Analysts Journal 57.1, pp. 41–59.

[5] Duffie, Darrell, Leandro Saita, and Ke Wang (2007). “Multi-period corporate default prediction
with stochastic covariates”. In: Journal of Financial Economics 83.3, pp. 635–665.

[6] Duffie, Darrell and Kenneth J Singleton (1999). “Modeling term structures of defaultable bonds”. In: The review of financial studies 12.4, pp. 687–720.

[7] Fuh, Cheng-Der and Chu-Lan Michael Kao (2017). “Correlated Defaults with a Distanceto-Default”. In: Technical Report.

[8] Huang, Jimmy et al. (2012). “Modeling credit correlations an overview of the Moody’s Analytics GCorr Model”. In: Technical Report.

[8] Leland, Hayne E (1994). “Corporate debt value, bond covenants, and optimal capital structure”. In: The journal of finance 49.4, pp. 1213–1252.

[9] Longstaff, Francis and Eduardo Schwartz (1995). “Valuing risky debt: A new approach”. In: Journal of Finance 50.3, pp. 789–819.

[10] McNeil, Alexander J, Rudiger Frey, and Paul Embrechts (2015). Quantitative risk management:Concepts, techniques and tools. Princeton university press.

[11] Merton, Robert C (1974). “On the pricing of corporate debt: The risk structure of interest rates”. In: The Journal of finance 29.2, pp. 449–470.

[12] Shreve, Steven E (2004). Stochastic calculus for finance II: Continuous-time models.Vol. 11. Springer Science & Business Media.

[13] Zhou, Chunsheng (2001). “The term structure of credit spreads with jump risk”. In:Journal of Banking & Finance 25.11, pp. 2015–2040.
指導教授 傅承德(Cheng-Der Fuh) 審核日期 2018-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明