博碩士論文 105225025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:35.172.111.71
姓名 黃中彥(Chung-Yan Huang)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(Likelihood-based analysis of doubly-truncated data under the location-scale and AFT models)
相關論文
★ A control chart based on copula-based Markov time series models★ An improved nonparametric estimator of distribution function for bivariate competing risks model
★ Estimation and model selection for left-truncated and right-censored data: Application to power transformer lifetime modeling★ A robust change point estimator for binomial CUSUM control charts
★ Maximum likelihood estimation for double-truncation data under a special exponential family★ A class of generalized ridge estimator for high-dimensional linear regression
★ A copula-based parametric maximum likelihood estimation for dependently left-truncated data★ A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments
★ Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula★ A review and comparison of continuity correction rules: the normal approximation to the binomial distribution
★ Likelihood inference on bivariate competing risks models under the Pareto distribution★ Parametric likelihood inference with censored survival data under the COM-Poisson cure models
★ Copula-based Markov chain model with binomial data★ The Weibull joint frailty-copula model for meta-analysis with semi-competing risks data
★ A general class of multivariate survival models derived from frailty and copula models: application to reliability theory★ Performance of a two-sample test with Mann-Whitney statistics under dependent censoring with copula models
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當雙截切(double-truncation)發生於在壽命資料分析時,我們蒐集到的個體失效時間若且唯若落於某個特定的時段內,而該截切的時段(也就是左截切和右截切的時間)因抽樣設計所影響。本篇論文研究壽命變數T於雙截切的情況下,探討對數-位置-尺度模型(log-location-scale model)及加速失敗時間模型(accelerated failure time model)。我們基於概似推論提出估計模型參數的方法,進而利用牛頓-拉弗森演算法(Newton-Raphson algorithm)得到點估計及信賴區間、信賴區域(confidence region)及信賴帶(confidence band)等區間估計。我們利用模擬實驗來查驗所提出方法的準確性,最後以現場可靠度研究(field reliability study) ─ Equipment-S data作為例證。
摘要(英) Double-truncation appears in the lifetime data analysis when the units are collected if and only if their failure occurs within a certain timespan. The timespan is defined by a left-truncation limit and right-truncation limit specified by the sampling design. This thesis studies the lifetime variable under the log-location-scale model and the accelerated failure time model when is subject to double-truncation. We develop likelihood-based inference methods for the parameters in the models. In particular, a Newton-Raphson algorithm is developed for point estimation. Confidence interval, region and band are developed for interval estimation. We conduct simulation studies to examine the accuracy of the proposed methods. The illustrations of the proposed methods are given by real data from a field reliability study, Equipment-S data.
關鍵字(中) ★ 可靠度
★ 信賴帶
★ 信賴區間
★ 韋伯分布
★ 牛頓-拉弗森演算法
關鍵字(英) ★ Reliability
★ Confidence band
★ Confidence interval
★ Weibull distribution
★ Newton-Raphson algorithm
論文目次 Contents
Chapter 1 Introduction…………………………………………………………………………......1
Chapter 2 The Location-scale model…………………………………………….....3
2.1 The Weibull model………………………………………………………………………....3
2.2 The accelerated failure time model……………………………………5
Chapter 3 Method of estimation……………………………………………………………………6
3.1 Likelihood functions……………………………………………………………………….6
3.2 Score function and Hessian matrix………………………………………7
3.3 Randomized Newton-Raphson (RNR) algorithm………………11
Chapter 4 Interval estimation………………………………………………………………..16
4.1 Wald-type Confidence interval for …………………………….17
4.2 Transformed Confidence interval for ……………………..17
4.3 Wald-type confidence region……………………………………………………18
4.4 Confidence band for …………………………………………………………....19
Chapter 5 Simulation……………………………………………………………………………......22
5.1 Simulation design…………………………………………………………………………..22
5.1.1 The Weibull model.…………………………………………………………………….22
5.1.2 The Weibull AFT model…………………………………………………………….23
5.2 Simulation results………………………………………………………………………..26
Chapter 6 Data analysis…………………………………………………………………………....35
6.1 The Equipment-S data…………………………………………………………………..35
6.2 Numerical results…………………………………………………………….......37
Chapter 7 Concluding remarks…………………………………………………………………..42
Appendix A…………………………………………………………………………………………...........44
Appendix B…………………………………………………………………………………………...........47
Appendix C…………………………………………………………………………………………...........49
Appendix D…………………………………………………………………………………………...........51
References…………………………………………………………………………………………...........55
參考文獻 References

Cheng RCH, Iles TC (1983) Confidence bands for cumulative distribution functions of continuous random variables. Technometrics, 25(1): 77-86.
Cramér H (1946) Mathematical methods of statistics. Princeton University Press, the United States.
Cochran WG (1968) Errors of measurement in statistics. Technometrics, 10(4): 637-666.
Dörre A (2017) Bayesian estimation of a lifetime distribution under double truncation caused by time-restricted data collection. Stat Pap, doi: 10.1007/s00362-017-0968-7.
Efron B, Petrosian V (1999) Nonparametric methods for doubly truncated data. J Am Stat Assoc, 94(447): 824-834.
Emura T, Hu YH, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation. Stat Pap, 58(3): 877-909.
Emura T, Konno Y, Michimae H (2015) Statistical inference based on the nonparametric maximum likelihood estimator under double-truncation. Lifetime Data Anal, 21(3): 397-418.
Emura T, Konno Y (2012) Multivariate normal distribution approaches for dependently truncated data, Stat Pap 53 (1): 133-149.
Emura T, Murotani K (2015) An algorithm for estimating survival under a copula-based dependent truncation model. 24(4): 734-751.
Emura T, Pan CH (2017) Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach. Stat Pap, doi:10.1007/s00362-017-0947-z.
Emura T, Wang W (2012) Nonparametric maximum likelihood estimation for dependent truncation data based on copulas. J Multivar Anal, 110: 717-188.
Escobar LA, Hong Y, Meeker WQ (2008) Simultaneous confidence bands and regions for log-location-scale distributions with censored data. J Stat Plan Inference, 139(2009): 3231-3245.
Frank G, Dörre A (2017) Linear regression with randomly double-truncated data. South African Statist J, 51(1): 1-18.
Harter G (1987) Estimation and test for the parameters of the arrhenius model. Qual Reliab Eng Int, 3(4): 219-225.
Hong Y, Meeker WQ, Escobar LA (2008) Avoiding problems with normal approximation confidence intervals for probabilities. Technometrics, 50(1): 64-68.
Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation. Comput Stat, 30(4): 1199-1229.
Jeng SL, Meeker WQ (2001) Parametric simultaneous confidence bands for cumulative distributions from censored data. Technometrics, 43(4): 450-461.
Klein JP, Moeschberger ML (2003) Survival analysis techniques for censored and truncated data, second edition. Springer, New York.
Lawless JF (2003) Statistical models and methods for lifetime data, second edition. Springer, New York.
Menon MV (1963) Estimation of the shape and scale parameters of the Weibull distributions. Technometrics, 5(2): 175-182.
Moreiea C, de Uña-Álvarez J, van Keilegom I (2014) Goodness-of-fit tests for a semiparametric model under random double truncation. Comput Stat, 29(5): 1365-1379.
Nelsen RB (2006) An introduction to copulas. Springer, New York.
Sankaran PG, Sunoj SM (2004) Identification of models using failure rate and mean residual life of doubly truncated random variables. Stat Pap, 45(1): 97-109.
Shen PS (2010) Nonparametric analysis of doubly truncated data. Ann Inst Stat Math, (62)5: 835-853.
Shen PS, Liu Y (2017) Pseudo maximum likelihood estimation for the Cox model with doubly truncated data. Stat Pap, doi: 10.1007/s00362-016-0870-8.
Ye ZS, Tang LC (2016) Augmenting the unreturned for filed data with information on returned failures only. Technometrics, 58(4): 513-523.
指導教授 江村剛志(Takeshi Emura) 審核日期 2018-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明