博碩士論文 105226018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.233.220.21
姓名 侯坤劭(Kun-Shao Hou)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以磷酸自組性單分子層修飾介電層表面特性應用於橫向與垂直有機電晶體之研究
(Surface modification with phosphonic acid self assembled monolayer for lateral and vertical organic transistors)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 有機強耦合共振腔元件設計與發光量測系統架設之研究
★ 強耦合有機微共振腔之設計與研究★ 光激發有機極化子元件之製作與量測
★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究★ 光激發有機極化子元件之模擬與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-29以後開放)
摘要(中) 本論文研究磷酸自組性單分子層沉積於金屬氧化層對橫向與垂直有機電晶體,並探討不同碳鏈長的自組性單分子層(SAM)對於N型小分子材料碳六十(C60)與P型小分子材料dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b](DNTT)與金屬氧化層界面的影響。由橫向電晶體電性表現結果發現當SAM成長於金屬氧化層基材有助於載子遷移率(mobility)提升,其中在DDPA(C12)處理下mobility較高。進一步透過AFM結構分析,觀察表面形貌、晶粒大小以及表面粗糙度的差異。本研究再以膠體微影技術製作P型垂直電晶體,並探討在不同碳鏈長的SAM對於垂直電晶體載子的側向注入,發現開電流密度提升的趨勢與橫向電晶體的mobility相仿。
摘要(英) In this thesis, the organic thin film transistors(OFET) and vertical organic transistors(VFET) were fabricated with phosphonic acid self-assembled monolayer deposited on the metal oxide, and the influence of alkyl chain length on the organic semiconductor(OSC)/dielectric interface were investigated. From the results of transistor characteristics, we found that SAM grows on metal oxide contribute to enhancing the mobility .The OFET with DDPA exhibited the highest saturation mobility among the PA-SAMs. Further investigations from AFM analyse showed that the differences grain size and growth mode. This thesis applies colloidal lithography to fabricate DNTT VFET. And then we explore the lateral injection of carriers of VFET. This study found that the trend of increasing the current density is similar to mobility of the lateral transistor.
關鍵字(中) ★ 磷酸自組性單分子層 關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章緒論 1
1-1前言 1
1-2自組性單分子層 3
1-3蕭特基基底垂直式電晶體 5
1-4研究動機 9
第二章基礎原理 11
2-1有機薄膜場效電晶體簡介 11
2-2有機場效電晶體基本架構 12
2-3有機場效電晶體之工作原理 15
2-4有機場效電晶體之電流對電壓關係與重要參數 18
2-5自組性單分子層簡介 21
2-6垂直式電晶體之工作原理 23
2-6-1垂直電晶體-關狀態之工作機制 25
2-6-2垂直電晶體-開狀態之工作機制 28
2-6-3垂直電晶體-轉換特性曲線與開/關電流比 32
第三章 實驗部分 34
3-1材料介紹 35
3-2實驗儀器設備 40
3-3量測儀器 45
3-4橫向電晶體實驗製成步驟 58
3-5垂直有機電晶體之元件設計 61
第四章 結果與討論 67
4-1 N-channel不同自組性單分子層處理的電性表現 67
4-2 P-channel不同自組性單分子層處理的電性表現 73
4-2-1不同自組性單分子層處理對於電晶體之影響 73
4-2- 2 不同SAM處理的DNTT之表面形貌與晶體結構 78
4-2-3 DNTT 薄膜的近緣X光吸收細微結構光譜 82
4-2-4不同SAM處理的DNTT之XRD分析 86
4-3低電壓驅動垂直有機電晶體 88
4-3-1高電容密度介電層 88
4-3-2開孔源極電極之製作 90
4-3-3 P型垂直式有機電晶體 93
第五章 結論與未來展望 97
參考文獻 99
參考文獻 1] W. Gu, W. Jin, B. Wei, J. Zhang, J. Wang, Applied Physics Letters, 97 (2010) 243303.
[2] T. Maeda, H. Kato, H. Kawakami, Applied Physics Letters, 89 (2006) 123508.
[3] J. Youn, G.R. Dholakia, H. Huang, J.W. Hennek, A. Facchetti, T.J. Marks, Advanced Functional Materials, 22 (2012) 1856-1869.
[4] K. Xiao, Y. Liu, G. Yu, D. Zhu, Applied Physics A: Materials Science & Processing, 77 (2003) 367-370.
[5] H. C. Lin, H. W. Zan , Y. C. Chao, M. Y. Chang, H. F. Meng, Science , 30 (2015) 054003.
[6] J.-F. Chang, W.-R. Chen, S.-M. Huang, Y.-C. Lai, X.-Y. Lai, Y.-W. Yang, C.-H. Wang, Organic Electronics, 27 (2015) 84-91.
[7] N. Yoshimoto, H. Brisset, J. Ackermann, C. Videlot-Ackermann, Open Journal of Applied Sciences, 02 (2012) 283-293.
[8] S.R.P. Marcia M. Payne, John E. Anthony, Chung Chen Kuo, Thomas N. Jackson, J. AM. CHEM. SOC, 127 (2005) 4986-4987
[9] J. Smith, R. Hamilton, Y. Qi, A. Kahn, D.D.C. Bradley, M. Heeney, I. McCulloch, T.D. Anthopoulos, Advanced Functional Materials, 20 (2010) 2330-2337.
[10] J.W. Shi, H.B. Wang, D. Song, H.K. Tian, Y.H. Geng, D.H. Yan, Advanced Functional Materials, 17 (2007) 397-400.
[11] C.A. Di, G. Yu, Y. Liu, Y. Guo, W. Wu, D. Wei, D. Zhu, Phys Chem Chem Phys, 10 (2008) 2302-2307.
[12] F.-C. Chen, C.-H. Liao, Applied Physics Letters, 93 (2008) 103310.
[13] Y.L. CHONG AN DI, GUI YU, DAOBEN ZHU, ACCOUNTS OF CHEMICAL RESEARCH, Vol. 42 (2009) No.10.
[14] D. Kumaki, M. Yahiro, Y. Inoue, S. Tokito, Applied Physics Letters, 90 (2007) 133511.
[15] C.A. Di, G. Yu, Y. Liu, Y. Guo, X. Sun, J. Zheng, Y. Wen, Y. Wang, W. Wu, D. Zhu, Phys Chem Chem Phys, 11 (2009) 7268-7273.
[16] K.Fukuda, T.Hamamoto, T.Yokota, T.Sekitani, U.Zschieschang, H.Klauk, T.Someya, Appl. Phys. Lett, 95 (2009) 203301
[17] Orb Acton, Manish Dubey, Tobias Weidner, Kevin M. O’Malley, Tae-Wook Kim, Guy G. Ting, Daniel Hutchins, J. E. Baio, Tracy C. Lovejoy, Alexander H. Gage, David G. Castner, Hong Ma, and Alex K.-Y. Jen, Adv. Funct.Mater, 97 (2011) 1476-1488
[18] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, N. Tessler, Applied Physics Letters, 95 (2009) 213301.
[19] C. M. Keum, I. H. Lee, S. H. Lee, G. J. Lee, M. H. Kim, S. D. Lee, Optics Express, 22 (2014) 14750.
[20] A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, ACS Applied Mater, 7 (2015) 2149-2152.
[21] M. G. Lemaitre, E. P. Donoghue, M. A. McCarthy, B. Liu, S. Tongay, B. Gila, P. Kumar, R. K. Singh, B. R. Appleton, A. G. Rinzler, ACS Nano,6 (2012) 9095-9102.
[22] W. Chen, A. Rinzler, J. Guo, Journal of Applied Physics, 113 (2013) 094507.
[23] W. Chen, A. G. Rinzler, Jing Guo, Journal of Applied Physics, 113 (2013) 234501.
[24] B. Liu, M. A. McCarthy, Y. Yoon, D. Y. Kim, Z. Wu, F. So, P. H. Holloway, J. R. Reynolds, J. Guo, A. G. Rinzler, Advanced Materials, 20 (2008) 3605-3609.
[25] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A G. Rinzler, Science ,2305 (2004) 1273-1276.
[26] M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, Science , 332 (2011) 570-573.
[27] H. Yu, Z. Dong, J. Guo, D. Kim, F. So, ACS Applied Mater, 8 (2016) 10430-10435.
[28] J. Peng, Q. Sun, S. Wang, H.-Q. Wang, W. Ma, Applied Physics Letters, 103 (2013) 061603.
[29] Y.R. Su, W.G. Xie, Y. Li, Y. Shi, N. Zhao, J.B. Xu, Journal of Physics D: Applied Physics, 46 (2013) 095105.
[30] B.L. M. A. McCarthy, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, SCIENCE, 332 (2011) 570-573.
[31] M.A. McCarthy, B. Liu, A.G. Rinzler, Nano Lett, 10 (2010) 3467-3472.
[32] K.F. Seidel, L. Rossi, R.M.Q. Mello, I.A. Hümmelgen, Journal of Materials Science: Materials in Electronics, 24 (2012) 1052-1056.
[33] F. So, C. Adachi, K. Jokinen, A. Bykov, T. Fabritius, R. Myllylä, 9183 (2014) 91831Q.
[34] M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Applied Physics Letters, 81 (2002) 268.
[35] K.C. Yoon MH, Facchetti A, Marks TJ., J Am Chem Soc, 128(39) (2006) 12851-12869.
[36] Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, T. Sakurai, Applied Physics Letters, 84 (2004) 3789.
[37] M. McDowell, I.G. Hill, J.E. McDermott, S.L. Bernasek, J. Schwartz, Applied Physics Letters, 88 (2006) 073505.
[38] Y. Jang, J.H. Cho, D.H. Kim, Y.D. Park, M. Hwang, K. Cho, Applied Physics Letters, 90 (2007) 132104.
[39] M. Waqas Alam, Z. Wang, S. Naka, H. Okada, Applied Physics Letters, 102 (2013) 061105.
[40] J.-Z.W. Cheng-Yu Lu, Hong-Yu Su, Dian Luo, Yun-Lan Chen, Chih-Hao Chang, Hsin-Hua Chang, OPTIC, (2015).
[41] X. Cheng, Y.-Y. Noh, J. Wang, M. Tello, J. Frisch, R.-P. Blum, A. Vollmer, J.P. Rabe, N. Koch, H. Sirringhaus, Advanced Functional Materials, 19 (2009) 2407-2415.
[42] A.H. Bert de Boer, M. Magdalena Mandoc, Teunis van Woudenbergh, Paul W. M. Blom, Adv. Mater, 5 (2005) 621-625.
[43] H.S. Jana Zaumseil, Chem. Rev, 107 (2007) 1296-1323.
[44] I.G. Hill, C.M.Weinert, L.Kreplak, B.P.van Zyl, Appl Phys A,
94 (2008)
[45] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, N. Tessler, Applied Physics Letters, 95 (2009) 213301.
[46] Y. Preezant, N. Tesslera, Journal of Applied Physics, 93 (2003) 2059.
[47] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Applied Physics Letters, 67 (1995) 121.
[48] Hong Ma, Orb Acton, Daniel O. Hutchins, Nathan Cernetic and Alex K.-Y. Jen,Phys. Chem. Chem. Phys,14 2012 14110-141263
[49] Orb Acton, Guy G. Ting, Patrick J. Shamberger, Fumio S. Ohuchi, Hong Ma, and Alex K.-Y. Jen. Applied Materials & Interfaces, 2 2010 2511-520.
• [50] Min-Cherl Jung, Matthew R. Leyden, Gueorgui O. Nikiforov, Michael V. Lee, Han-Koo Lee, Tae Joo Shin, Kazuo Takimiya, Yabing Qi. Applied Materials & Interfaces, 7 2015 1833-1840.
指導教授 張瑞芬 審核日期 2019-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明