博碩士論文 105226024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.190.219.65
姓名 楊博翔(Po-Shyang Yang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以多種波長之LED偵測於手腕與手指之光體積變化描記法之波形分析與血壓估算
(Analyze of Waveform Signal and Estimate of Blood Pressure Based on Photoplethysmography at the Wrist and the Finger by Using Several Single Wavelength Light-Emitting Diode)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,隨著人口老化比例上升與人口肥胖比例的上升,因此心血管疾病(Cardiovascular Disease, CVD)罹患人口比例有日益漸增並且年齡層呈現下降的趨勢。因此若能有更即時、更便利的對血壓做出監控的方法,即能有效地對心血管疾病做出預防。此外,隨著穿戴式裝置的興起,若能透過穿戴式裝置監控即時的生理訊號無疑是一個預防心血管疾病的一種方法。因此,本篇將探討適合使用穿戴式裝置的部位,與其取得的訊號與生理資訊的準確性與比較。
本論文利用反射式光體積變化描記法(Photoplethysmography, PPG),去探討人體內的血管動脈運作時反映出來的生理訊號。並應用以白努力定律(Bernoulli′s principle)為計算基礎,所推導出的生理指標參數ΔRI (Delta Reflection Index, ΔRI)量測法,去作血壓(Blood Pressure, BP)估算。
並應用四種單波長(530nm,650nm,850nm,940nm) 之LED(Light-Emitting Diode),量測手指近端指節(proximal part of finger)與手腕的橈動脈(radial artery)處,對其做出波形穩定性分析後,再以530nm與940nm之LED燈泡為光源做血壓估算實驗,並與手指指尖(fingertip)部分之實驗比較。
實驗結果顯示,在指尖處以535nm為光源量測進行血壓估算,收縮壓誤差為4.7±1.5%以及舒張壓誤差為5±1.5%;在手腕處以940nm為光源之量測具有較高的波形穩定度,以及較低的血壓量測誤差。其收縮壓誤差值為5±0.5%以及舒張壓誤差值為5±1%;而在手指近端指節部分,其波形的穩定度與血壓的誤差值在以530nm與940nm兩者為光源之量測下具有差不多之效果,兩者收縮壓誤差範圍為7±2%,舒張壓誤差範圍為9±2%。其血壓估算可靠性較低。
摘要(英) In recent years, as the proportion of population ageing increases and the proportion of obesity in the population increases, the proportion of cardiovascular disease (CVD) population is increasing and the age group is declining. If there is a more immediate and convenient way to monitor blood pressure, it can effectively prevent cardiovascular diseases. with the rise of wearable devices, monitoring the immediate physiological signals through wearable devices is undoubtedly a way to prevent cardiovascular disease. Therefore, this article will explore the accuracy and comparison of the signals and physiological information obtained from the wearable device.
In this thesis, we use reflectance Photoplethysmography (PPG) to explore the physiological signals reflected by the operation of vascular arteries in the human body. Based on the calculation of Bernoulli′s principle, the physiological parameter ΔRI (Delta Reflection Index, ΔRI) is used to estimate the blood pressure.
Four single-wavelength (530nm, 650nm, 850nm, 940nm) LEDs (Light-Emitting Diode) are used to measure the proximal part of the finger and the radial artery at the wrist. After the waveform stability analysis, the blood pressure estimation experiment was carried out with the LED bulbs of 530 nm and 940 nm as the light source, and compared with the experiment of the fingertip part.
As a result of the experiment, the measurement of the 940 nm as the light source at the wrist has a high waveform stability and a low blood pressure measurement error. The SBP error value is 5±0.5% and the DBP error value is 5±1%. In the proximal part of the finger, the waveform stability and blood pressure error value have similar effects under the measurement of 530nm and 940nm. The SBP error range is 7±2% and the DBP error range is 9 ± 2%. Its blood pressure estimation is less reliable.
關鍵字(中) ★ 光體積變化描記法
★ ΔRI
★ 動脈血管壓力
關鍵字(英) ★ PPG
★ ΔRI
★ Blood Pressure
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 引言 1
1-2 研究動機 2
1-3 研究目的 4
1-4 論文架構 4
第二章 基礎理論與文獻回顧 5
2-1血液循環系統與血壓 5
2-1-1 血液循環系統 5
2-1-2 血壓 7
2-2 光體積變化描記法(Photoplethysmography, PPG) 8
2-2-1 光體積變化描記法原理 8
2-2-2 PPG之種類 9
2-2-3 PPG之應用 10
2-3 血壓量測方式與演進 10
2-3-1 侵入式血壓量測法 10
2-3-2 非侵入式血壓量測法 11
2-3-3 非侵入式血壓演算之文獻 12
2-4 ΔRI(Delta Reflection Index, ΔRI)血壓演算法 15
2-4-1 PPG波形 15
2-4-2 ΔRI之生理參數估算血壓 17
2-4-3 ΔRI演算法實驗結果與比較 19
2-5 手腕部分橈動脈(Radial Artery)之PPG訊號量測 19
第三章 實驗架構與研究方法 21
3-1 實驗架構 21
3-2 實驗設計與方法 23
3-2-1 ΔRI血壓量測法 23
3-2-2 波形穩定性分析 25
3-2-3 帶通濾波(Band Pass Filter) 26
3-2-4 量測部位探討 27
3-2-5 實驗系統流程 30
第四章 實驗結果與討論 31
4-1 手腕部分實驗結果與討論 31
4-1-1 四種波長光源量測於手腕橈動脈處之波形穩定性分析 31
4-1-2 手腕530nm與940nm光源之血壓估算 35
4-1-3 手腕部分實驗結果 37
4-2 手指近端指節部分實驗結果與討論 37
4-2-1 四種波長光源量測於手指近端指節處之波形穩定性分析 37
4-2-2 近端指節530nm與940nm光源之血壓估算 41
4-2-3 手指近端指節部分實驗結果 42
4-3整體比較 43
4-3-1 穩定狀態下之比較 43
4-3-2 運動後可靠性比較 44
第五章 結論與未來展望 46
5-1結論 46
5-2未來展望 47
參考文獻 48
參考文獻 [1] https://money.udn.com/money/story/5648/3079561
[2] https://www.newsecuritybeat.org/2013/09/fast-growing-countries-aging-concern-planning-demographic-dividend/
[3] https://zh.wikipedia.org/wiki/%E5%BF%83%E8%A1%80%E7%AE%A1%E7%96%BE%E7%97%85
[4] https://zh.wikipedia.org/wiki/%E8%A1%80%E5%A3%93
[5] http://www.postal.com.tw/%E7%B6%B2%E7%AB%99%E8%A1%9B%E6%95%99%E5%96%AE%E5%BC%B5/%E5%BF%83%E8%87%9F%E5%85%A7%E7%A7%91/%E8%AA%8D%E8%AD%98%E9%AB%98%E8%A1%80%E5%A3%93.htm
[6] https://www.digitimes.com.tw/iot/article.asp?cat=130&cat1=45&cat2=25&id=0000447896_jxo7z59clcftq85vfigpl
[7] 周靜怡,〝使用光體積變化描記圖建立非侵入式動脈血壓技術探討〞,中央大學光電科學與工程學系,2017
[8] https://www.quora.com/What-is-the-order-of-the-blood-circulatory-system
[9] https://smallcollation.blogspot.com/2013/11/artery.html#gsc.tab=0
[10] https://embryology.med.unsw.edu.au/embryology/index.php?title=HM_Practical_-_Blood_Vessel_Histology
[11] 麥格羅希爾 合記,潘震澤 譯,人體生理學:身體功能的作用機制,四版,合計圖書出版社,2013
[12] https://biology.stackexchange.com/questions/31286/what-causes-a-small-bump-in-the-arterial-pressure-plot
[13] Toshiyo Tamura, Yuka Maeda, Masaki Sekine , Masaki Yoshida, ”Wearable Photoplethysmographic Sensors—Past and Present”, Electrics, 2014
[14] https://www.ntuh.gov.tw/BMED/equipment/DocLib/%E7%94%9F%E7%90%86%E7%9B%A3%E8%A6%96%E5%99%A8%E5%8A%9F%E8%83%BD%E8%88%87%E5%8F%83%E6%95%B8%E9%87%8F%E6%B8%AC%E5%8E%9F%E7%90%86%E7%B0%A1%E4%BB%8B.aspx
[15] https://courses.lumenlearning.com/suny-ap2/chapter/blood-flow-blood-pressure-and-resistance-no-content/
[16] Dong-Dong Fei, Chen Deng, Qin-Shun Zhang & Zu-Liang Huang, “Novel Method for More Precise Determination of Oscillometric Pulse Amplitude Envelopes”, Canadian Center of Science and Education, 2015
[17] Kanda T, “Arterial pulse wave velocity and risk factors for peripheral vascular disease”, Springer-Verlag, 2000
[18] Yan Chen, Changyun Wen, Guocai Tao, Min Bi, “A new methodology of continuous and noninvasive blood pressure measurement by pulse wave velocity”, IEEE, 2010
[19] X. F. Teng, et al. “Continuous and Noninvasive Estimation of Arterial Blood Pressure Using a Photoplethysmographic Approach”, IEEE, 2003
[20] Samaneh Mazahen, Edmond Zahedi, “A Comparative Review of Blood Pressure Measurement Methods Using Pulse Wave Velocity”, IEEE, 2014
[21] Xiao-Rong Ding, Yuan-Ting Zhang, “Photoplethysmogram Intensity Ratio: A Potential Indicator for Improving the Accuracy of PTT-Based Cuffless Blood Pressure Estimation”, IEEE, 2015
[22] Xiao-Rong Ding, Yuan-Ting Zhang, “A New Modeling Methodology for Continuous Cuffless Blood Pressure Measuremen”, IEEE, 2016
[23] Wilmer Nichols, et al. “McDonald′s Blood Flow in Arteries, Sixth Edition: Theoretical, Experimental and Clinical Principles”, CRC Press, 2011
[24] Yung-Hua Kao, Paul C.-P. Chao, Yueh Hung, Chin-Long Wey, “A New Reflective PPG LED-PD Sensor Module for Cuffless Blood Pressure Measurement at Wrist Artery”, IEEE, 2017
[25] http://www.commonhealth.com.tw/article/article.action?nid=72395
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2018-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明