博碩士論文 105226035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.117.142.128
姓名 呂其孟(Chi-Meng Lu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以非週期性晶疇極化反轉鈮酸鋰達成連續式或主動式Q-調制雙波長Nd:YVO4雷射電光選頻之研究
(Electro-optically laser line switchable in a dual-wavelength cw/Q-switched Nd:YVO4 laser based on aperiodically poled lithium niobate)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用模擬退火法設計出藉由施加單段電光調制而得到1064.5nm & 1342.33nm雙波長的選頻,有別於其他使用機械式的波長與波長之間選頻的切換本實驗利用電光調制系統快速的切換波長選擇輸出,切換的時間遠遠小於它們,

本論文還利用單段電光分別主動式Q調制1064.5nm & 1342.33nm雙波長進而得到非相位匹配(non-phase matching)的綠光脈衝雷射與紅光脈衝雷射,還可以利用雙波長同時Q調制來達到和頻的作用進而輸出非相位匹配(non-phase matching)593nm的橘黃光脈衝雷射之非週期性極化反轉鈮酸鋰晶體。

本論文也實際經過黃光微影製程,並利用高電場極化反轉製程做出電光非週期性極化反轉鈮酸鋰晶體,最後進行端面拋光以及鍍上端面的抗反射膜。
在實際量測上本實驗對電光非週期性鈮酸鋰極化轉鈮酸鋰晶體施加三種不同的Y方向電場來達到單段或雙波長輸出,經由三面共軸線性的共振鏡所組成的Nd:YVO4雷射系統中,調整M2 & M3的距離使兩波長增益相同,在未施加電場下(0V/mm),可以同時輸出波長1064.5nm & 1342.33nm之最高能量cw雷射;在施加電場267V/mm下,可以只輸出波長1064.5nm之最高能量cw雷射;在施加895V/mm,可以只輸出波長1342.33nm之cw雷射。
另外我們還對電場做了一個容忍度的量測,在施加DC電場244V/mm到285V/mm,總共42V/mm的容忍度都可以只單一輸出1064.5nm訊號光cw雷射光,而在施加DC電場884V/mm到916V/mm,總共33V/mm的容忍度都可以只單一輸出1342.33nm訊號光cw雷射光。

另外用電光非週期性鈮酸鋰極化轉鈮酸鋰晶體施加三種不同的Q調制系統來達到五種不同波長的雷射脈衝雷射光產生,其一為在電場267V/mm & 685V/mm的Q開關快速切換之下可產生1064.5nm脈衝雷射光,其最窄的脈衝寬度為約為9.6171ns,其腔內的尖峰功率約為18580瓦與經由鈮酸鋰晶體所產生的非相位匹配(non-phase matching)之二倍頻532nm綠光脈衝雷射光,綠光最窄的脈衝寬度為約為8.7368ns,其尖峰功率約為30.8瓦。
其二為在電場895V/mm & 685V/mm的Q開關快速切換之下可產生1342.33nm脈衝雷射光,其最窄的脈衝寬度為約為25.4740ns,其腔內的尖峰功率約為6332瓦與經由鈮酸鋰晶體所產生的非相位匹配(non-phase matching)之二倍頻671nm紅光脈衝雷射光,紅光最窄的脈衝寬度為約為15.0374ns,其尖峰功率約為9.7瓦。
其三為在電場0V/mm & 685V/mm的Q開關快速切換之下可產生1064.5nm & 1342.33nm脈衝雷射光,並經過鈮酸鋰晶體之和頻機制而得到的非相位匹配(non-phase matching)593nm脈衝雷射橘黃光,593nm橘黃光最窄的脈衝寬度為約為8.0198ns,其尖峰功率約為74.19瓦。

在未來可選擇兩個波長距離相對於較近的波長,例如使用增益晶體為Nd:YLF的雷射系統(受激輻射頻譜為1047nm & 1053nm),並且又能用在電光調制下分開並且選頻,這將會是一大進步。
摘要(英) In this thesis, we demonstrated an aperiodically poled lithium niobate (APPLN) crystal, which designed by the simulated annealing method for simultaneously being an electro-optic (EO) laser-line switch and an EO Q-switch in a dual-wavelength Nd:YVO4 laser. The demonstrated system can realize dual-wavelength selection of both or either one of the 1064.5nm and 1342.33nm laser lines simply by EO tuning (via voltage switching), which features ultra-fast switching speed in contsrast to those using slow mechanical or thermal tuning mechanisms.

In this study, we first successfully achieved wavelength selection via EO tuning in a cw dual-wavelength 1064.5nm and 1342.33nm laser; both laser lines can be produced when no external electric field is applied to the APPLN device, while only the 1064.5nm laser line and only the 1342.33nm laser line can be produced when electric fields of 267V/mm and 895V/mm are applied to the APPLN, respectively, with electric-field tuning tolerances of ~42V/mm and ~33V/mm, respectively.

Moreover, when the novel APPLN device in the dual-wavelength Nd:YVO4 laser system is switched between 267V/mm and 685V/mm electric fields at a repetition rate of 1kHz, we can obtain pulsed 1064 nm laser generation (~18.5kW peak power), accompanying with non-phase-matched second-harmonic (SH) 532 nm green laser generation (~30 W peak power). When the laser system is switched between 895V/mm and 685V/mm electric fields at a repetition rate of 1kHz, we can obtain pulsed 1342 nm laser generation (~6.3kW peak power), accompanying with non-phase-matched SH 671 nm red laser generation (~9.7 W peak power). Moreover, when the laser system is switched between 0V/mm and 685V/mm electric fields at a repetition rate of 1kHz, we can obtain pulsed 1064 and 1342 nm dual-line laser generation, accompanying with non-phase-matched sum-frequency 593 nm orange laser generation (~74 W peak power). The novel Nd:YVO4 laser system using an APPLN crystal as simultaneously an EO laser-line switch and an EO Q-switch can thus produce pulsed 1064 nm, 1342 nm, 593 nm orange, 532 nm green, and 671 nm red generations simply by EO tuning.
關鍵字(中) ★ 波長選頻
★ 非週期性晶疇極化反轉鈮酸鋰晶體
★ 非線性光學
★ Q調制
關鍵字(英) ★ Wavelength selection
★ aperiodically poled lithium niobate
★ nonlinear optics
★ Q-switch
★ electro optic
★ Nd:YVO4
論文目次 第一章 緒論..1
1.1發展與簡史........1
1.2鈮酸鋰晶體........2
1.3雷射增益晶體Nd:YVO4........5
1.4研究動機........8
1.5內容概要........16
第二章 理論分析..17
2.1電光效應........17
2.2索爾克濾波器與在具電光係數的鈮酸鋰上製作索爾克濾波器........24
2.3共振腔Q調制(Q-switching)........28
2.4和頻機制(Sum Frequency Generation, SFG)........35
第三章 元件設計理論與過程..40
3.1電光雙波長非週期性晶疇極化反轉結構........40
3.2模擬退火法........41
3.3電光偏振調制在非週期性晶疇極化反轉結構之模擬機制........46
第四章 元件模擬設計與晶片製作流程..53
4.1 元件模擬設計與參數設定........53
4.2晶疇極化反轉之黃光製程........54
4.3使用加高電場法使晶疇反轉過程與晶疇反轉製程........58
第五章 元件模擬設計結果與實驗量測結果分析..68
5.1 雙波長電光非週期性偏振調制模擬結果........68
5.2實驗架構與結果分析........74
第六章 實驗結論與未來展望..104
6.1 實驗結論........104
6.2 未來展望........105
第七章 參考文獻..108
7.1 第一章參考文獻........108
7.2 第二章參考文獻........111
7.3 第三章參考文獻........111
7.4 第四章參考文獻........112
7.5 第六章參考文獻........112
參考文獻 7.1 第一章參考文獻
[1.1] A. Einstein, “Zum gegenwärtigen Stande des Strahlungsproblems.” Physikalische Zeitschrift, Band 10, Seite, p.185–193, (1909)
[1.2] A. Einstein, “Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung.”, Physikalische Zeitschrift, Band 10, Seite, p.817–825, (1909)
[1.3] M. Planck, “On the law of distribution of energy in the normal spectrum.”, Annalen der physik 4.553, p.1, (1901)
[1.4] A. Einstein, “Zur quantentheorie der strahlung.”, Physikalische Zeitschrift, 18, Seite, p.121-128, (1917)
[1.5] T. H. Maiman, “Stimulated optical radiation in ruby.”, Nature, 187, p.493-494, (1960)
[1.6] P. A. Franken, A. E. Hill, C. W. Peter, G. Weinreich, “Generation of Optical Harmonics.”, Physical Review Letters, Vol.7, Number 4, p.118, (1961)
[1.7] J. A. Giordmaine, “Mixing of light beam in crystal.”, Phys. Rev. Lett. 8, P.19, (1962)
[1.8] M. Bass, P. A. Franken, A. E. Hill, C. W. Peter, G. Weinreich, “Optical Mixing.”, Physical Review Letters, Vol.8, Number 18, (1962)
[1.9] W. H. Zachariasen, “Skr. Norske Vid-Ada.”, Oslo, Mat. Naturv, No.4, (1928)
[1.10] A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique.”, J. American Ceram. Soc. 48, p.112, (1965)
[1.11] H. D. Megaw, “A note on the structure of lithium niobite.”, Acta. Cryst. A24, p.583, (1968)
[1.12] 胡明理,「Zn:LiNbO3之晶體生長與其特性研究」,中央大學,(2004)
[1.13] P. Lerner, C. Legras and J. P. Duman, “Stoechiométrie des Monocristaux de Métaniobate de Lithium.”, Journal of Crystal Growth,3-4, (1968)
[1.14] K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system.”, J. Crystal Growth 116, p.327, (1992)
[1.15] 孔勇發,許京軍,張光寅,劉思敏,陸猗,「多功能光電材料 – 鈮酸鋰晶體」,科學出版社,(2005)
[1.16] Y. C. Huang, “Principles of Nonlinear Optics Course Reader.”, Institute of Photonics Technologies / Department of Electrical Engineering, 65 National Tsinghua University, Hsinchu, Taiwan, (2007)
[1.17] 姚健全,徐德剛,「全固態激光及非線性光學頻率轉換技術」,科學出版社,(2007)
[1.18] C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06μm wavelength.” Appl. Phys. B 70(4), p.471-474, (2000)
[1.19] 葉士瑋,陳永富,「熱效應對連續波雷射與脈衝波雷射的影響: 傳統晶體與鍵合晶體的比較」,國立交通大學,碩士論文,民國100年。
[1.20] 張專慶,陳永富,「利用緊貼組合Nd:YAG 及Nd:YVO4 晶體 實現高效率雙波長946 nm 及1064 nm 雷射」,國立交通大學,碩士論文,民國101年。
[1.21] N. Dai Hung, P. Brechignac, “Tunable alternate double-wavelength single grating dye laser for DIAL Systems.”, Applied optics 27.10, p.1906-1908, (1988)
[1.22] I. Mattis, A. Ansmann, D. Müller, U. Wandinger, D. Althausen, “Dual‐wavelength Raman lidar observations of the extinction‐to‐backscatter ratio of Saharan dust.”, Geophysical Research Letters 29.9, p.20-1 (2002)
[1.23] A. Arie, A. Burstein, “Electro-optical device and a wavelength selection method utilizing the same.”, U.S. Patent No. 6, 584, 260. 24 Jun, (2003)
[1.24] X. Feng, L. Sun, L. Xiong, Y. Liu, S. Yuan, G. Kai, X. Dong, “Switchable and tunable dual-wavelength erbium-doped fiber laser based on one fiber Bragg grating.”, Optical Fiber Technology 10.3, p.275-282, (2004)
[1.25] S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, Y. X. Xia, “Switchable multiwavelength erbium-doped fiber ring laser with a multisection high-birefringence fiber loop mirror.”, IEEE photonics technology letters 17.7, p.1387-1389, (2005)
[1.26] S. T. Lin, C. S. Hsieh, “Triple-wavelength Nd-laser system by cascaded electro-optic periodically poled lithium niobate Bragg modulator.”, Optics express 20.28, p.29659-29664, (2012)
[1.27] Y. H. Chen, Y. C. Huang, “Actively Q-switched Nd: YVO 4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch.” Optics letters 28.16, p.1460-1462, (2003)
[1.28] 張煒堃,「以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射」,國立中央大學,碩士論文,民國98年。
[1.29] F. Ji, B. Zhang, E. Li, H. Li, R. Zhou, T. Zhang, ..., J. Yao, “Theoretical study of the electro-optic effect of aperiodically poled lithium niobate in a Q-switched dual-wavelength laser.”, Optics communications 262.2, p.234-237, (2006)
[1.30] W. K. Chang, Y. H. Chen, J. W. Chang, “Pulsed orange generation optimized in a diode-pumped Nd: YVO4 laser using monolithic dual PPLN electro-optic Q switches.” Optics letters 35.16, p.2687-2689, (2010)
[1.31] J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. L. Mortensen, P. Buchhave, F. Laurell, “Efficient all solid-state continuous-wave yellow-orange light source.”, Optics Express 13.4, p.1188-1192, (2005)
[1.32] Copper vapor laser. 取http://en.wikipedia.org/wiki/Copper_vapor_laser
[1.33] Dye laser . 取自 http://en.wikipedia.org/wiki/Dye_laser

7.2 第二章參考文獻
[2.1] D. K. Cheng, “Field and Wave Electromagnetics.” Chap.3 India:Pearson International Edition, (1989)
[2.2] D. H. Jundt, “Temperature-dependent Sellmeier Equation for the Index of Refraction, ne, in Congruent Lithium Niobate.”, Optics Letters, Vol. 22, No. 20, (1997)
[2.3] I. Šolc, “Birefringent chain filters.”, J. of OSA Vol.55, No.6, (1965)
[2.4] D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, C. M. Walker, “An electro‐optic tunable filter.” Applied Physics Letters 34.6, p.391~393, (1979)
[2.5] X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobite.”, Optics letters 28.21, p.2115-2117, (2003)
[2.6] R. Dunsmuir, “Theory of Relaxation Oscillations in Optical Masers.”, J. Electron Control 10, p.453-458, (1961)
[2.7] O. Svelto, D. C. Hanna, “Principles of lasers.”, Vol. 4. New York: Plenum press, (1998)
[2.8] R. W. Boyed, “Nonlinear optics. Elsevier.”, (2003)

7.3 第三章參考文獻
[3.1] Y. Y. Zhu, N. B. Ming, “Second-harmonic generation in a Fibonacci optical superlattice and the dispersive effect of the refractive index.”, Physical Review B 42.6 p.3676, (1990)
[3.2] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, “Equation of state calculations by fast computing machines.”, The journal of chemical physics 21.6, p.1087-1092, (1953)
[3.3] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing”, science 220.4598, p.671-680, (1983)
[3.4] W. L. She, W. K. Lee, “Wave coupling theory of linear electro-optic effect”, Opt. Comm. 195, p.303-311, (2001)
[3.5] J. Shi, X. Chen, Y. Xia, Y. Chen, “Electro-optical polarization controller based on solc filter in periodically poled lithium niobate”, SPIE 65 Vol. 4905, (2002)
[3.6] C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Hung, J. Y. Chang, “Electro-optic narrowband and multi-wavelength filter in aperiodically poled lithium niobate”, Opt. Exp. Vol.15, No.15, (2007)

7.4 第四章參考文獻
[4.1] G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance.”, Diss. Stanford university, (1998)

7.5 第六章參考文獻
[6.1] 李瑋倫,陳永富「摻釹氟化釔鋰晶體在連續波與被動式 Q 開關雷射之研究。」,國立交通大學,碩士論文,民國99年。
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明