博碩士論文 105226040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.92.28.84
姓名 曾仲豪(Chung-Hao Tseng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 反射杯式與透鏡式 LED 車前燈之研究
(Study of LED Headlamp Using Reflector or Lens)
相關論文
★ 具光子回收之雷射多工雙光源照明模組之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-7-1以後開放)
摘要(中) 本論文主要針對反射杯式與全反射透鏡式車前燈進行比較與分析,探討兩款二次光學機構在光學設計上之特性與先天優劣。我們並提出以線性位移不變系統的概念,結合相關性與捲積運算進行光形疊加之光學模擬方式,探討在複雜的照明系統中能否有一定大小的線性位移不變範圍。本論文中透過宮格式方法來探討光學系統對應到光源面上之線性位移不變範圍,並與同等面積之朗伯面光源之光形做比較,研究結果顯示其NCC值高達95 %且光形最大照度值之相對誤差約為6.45 %。此方法有潛力為複雜的照明光學設計中之光學模擬提供一個新的發展方向。
摘要(英) This thesis is study the characteristics of the two secondary optical designs developed in the past, which include a reflection cup and a refraction lens. We propose a way by use linear & shift-invariant system concept, combined with correlation and convolution operation to perform the optical simulation of light pattern superposition, and study if the linear & shift-invariant concept is applicable. We divide the light source into multiple segments to check linear & shift-invariant property. The simulation result of the light pattern is compared with that by the Lambertain light source. According to the simulated results, the NCC value is higher than 95 % and the relative deviation of maximum illuminance value is around 6.45 %. Therefore, the proposed method is potentially helpful to optical design for a complicated illumination system.
關鍵字(中) ★ 線性位移不變量
★ 二次光學設計
★ LED 車前燈
★ 光學反射杯
★ 全反射透鏡
關鍵字(英) ★ Linear shift invariance
★ Secondary optical designs
★ LED headlamp
★ Optical reflactor
★ TIR lens
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 固態照明發展史 2
1-3 LED 在車用市場之發展與分析 4
1-4 研究動機與目的 6
1-5 論文大綱 8
第二章 基礎原理 9
2-1 光度學 9
2-2 中場擬合法 13
第三章 LED車前燈之法規介紹 16
3-1 德國 StVZO 22A No. 23法規 16
3-2 歐洲ECE規範No. 113法規 19
第四章 二次光學機構之光學設計與光學特性分析 24
4-1 簡介 24
4-2 反射杯式車前燈的光學特性之分析 25
4-3 透鏡式車前燈的光學特性之分析 29
4-4 總結 32
第五章 二次光學機構之線性位移不變量 35
5-1 線性位移不變系統 35
5-2 二次光學機構之線性位移不變量 37
5-3 反射杯式車前燈在線性位移不變系統之應用 52
5-4 以宮格式區分線性位移不變範圍 59
5-5 總結 64
第六章 結論 66
參考文獻 68
中英文名詞對照表 72
參考文獻 1. A. H. Maslow, “A theory of human motivation,” ?Psychol. Rev. 50, 370–396 (1943).
2. J. W. Howell and H. Schroeder, History of The Incandescent Lamp (Maqua Company, 1927).
3. R. Kane and H. Sell, Revolution in Lamps: A Chronicle of 50 Years of Progress (The Fairmont Press, Inc., 2001).
4. B. W. D′andrade and S. R. Forrest, “White organic light?emitting devices for solid?state lighting,” ?Adv. Mater. 16, 1585-1595 (2004).
5. N. Holonyak Jr. and S. Bevacqua, “Coherent (visible) light emission from Ga (As1? x P x) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
6. H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High?efficiency InGaAlP/GaAs visible light?emitting diodes,” Appl. Phys. Lett. 58, 1010-1012 (1991).
7. R. Fletcher, C. Kuo, T. Osentowski, K. Huang, M. Craford, and V. Robbins, “The growth and properties of high performance AlGalnP emitters using a lattice mismatched GaP window layer,” J. Electron. Mater. 20, 1125-1130 (1991).
8. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys. 31, 1258 (1992).
9. S. Nakamura, T. Mukai, and M. Senoh, “Candela?class high?brightness InGaN/AlGaN double?heterostructure blue?light?emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
10. S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN pn junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, L1998 (1991).
11. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story (Springer Science & Business Media, 2013).
12. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797 (1995).
13. S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32, L8 (1993).
14. S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, “InGaN multi?quantum?well structure laser diodes grown on MgAl2O4 substrates,” Appl. Phys. Lett. 68, 2105-2107 (1996).
15. S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35, L217 (1996).
16. Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material, ” US Patents, US5998925A (1999).
17. C. J. Humphreys, “Solid-state lighting,” MRS Bull. 33, 459-470 (2008).
18. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
19. A. ?ukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting (Wiley-Interscience, 2002).
20. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
21. Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light data transmission system utilizing white LED lights,” IEICE Trans. Commun. 86, 2440-2454 (2003).
22. N. Yeh and J. P. Chung, “High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation,” Renew. Sust. Energ. Rev. 13, 2175-2180 (2009).
23. Z. Feng, Y. Luo and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18, 22020-22031 (2010).
24. G. D. Massa, H. H. Kim, R. M. Wheeler, and C. A. Mitchell, “Plant productivity in response to LED lighting,” Hortscience 43, 1951-1956 (2008).
25. R. C. Morrow, “LED lighting in horticulture,” Hortscience 43, 1947-1950 (2008).
26. P. Brick and T. Schmid. Automotive Headlamp Concepts with Low-beam and High-beam Out of A Single LED (Illumination Optics II. International Society for Optics and Photonics, 2011).
27. A. Cvetkovic, O. Dross, J. Chaves, P. Benitez, J. C. Minano and R. Mohedano, “Etendue-preserving mixing and projection optics for high-luminance LEDs, applied to automotive headlamps,” Opt. Express 14, 13014-13020 (2006).
28. J. Jiang, C. Cheung, S. To, K. Cheng, H. Wang, and W. Lee, Design and Fabrication of Freeform Reflector for Automotive Headlamp (Power Electronics Research Centre, The Hong Kong Polytechnic University, 2006).
29. J. Jiao and B. Wang. High-efficiency Reflector Optics for LED Automotive Forward Lighting. in Nonimaging Optics and Efficient Illumination Systems IV. (SPIE, 2007).
30. X. Zhu, Q. Zhu, H. Wu, and C. Chen, “Optical design of LED-based automotive headlamps,” Opt. Laser Technol. 45, 262-266 (2013).
31. S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180 (2009).
32. Cree, Inc., First to Break 300 Lumens-Per-Watt Barrier, http://www.cree.com/
news-media/news/article/cree-first-to-break-300-lumens-per-watt-barrier.
33. L. Tahkamo and L. Halonen, “Life cycle assessment of road lighting luminaires–Comparison of light-emitting diode and high-pressure sodium technologies,” J. Clean Prod. 93, 234-242 (2015).
34. J. Wang, Y. X. Cai, W. W. Bao, H. X. Li, and Q. Liu, “Experimental study of high power LEDs heat dissipation based on corona discharge,” Appl. Therm. Eng. 98, 420-429 (2016).
35. R. Levy, H. Grossman, C. You, and Y. Yang, “LED-illuminated stop/tail lamp assembly,” US Patents, US5765940A (1998).
36. T. L. Roney and B. S. Rigsby, “LED vehicle lamp assembly,” US Patents, US5632551A (1997).
37. B. Wesson, “LED light module for vehicles,” US Patents, US6786625B2 (2002).
38. T. A. Burress, C. Coomer, S. Campbell, A. Wereszczak, J. Cunningham, L. Marlino, L. Seiber, and H. T. Lin, Evaluation of The 2008 Lexus LS 600H Hybrid Synergy Drive System (ORNL. Oak Ridge TN. 2009).
39. J. T. Hsu, T. H. Yen, and H. L. Liao. “Analysis Result and Study of LED Head Light Sets-Take LS600h Head Lights for Example,” ARTC. (2009).
40. LEDinside,2018年全球車用LED市場展望, https://www.ledinside.com.tw/
research/20171124-34769.html.
41. 楊凱宇,高功率 LED 之歐洲法規自行車前燈設計,國立中央大學光電所碩士論文,中華民國九十八年。
42. F. Chen, K. Wang, Z. Qin, D. Wu, X. Luo, and S. Liu, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20926-20938 (2010).
43. 蔡直佑,高光效多功能 LED 投射光形之研究,國立中央大學光電所博士論文,中華民國一百零四年。
44. 程勉儒,高功率白光 LED 適應性車燈之光學設計,國立中央大學光電所碩士論文,中華民國一百零三年。
45. V. N. Mahajan, Optical Imaging and Aberrations: Ray Geometrical Optics. (SPIE, 1998).
46. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
47. W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572-7577 (2007).
48. G. Wyszecki and W. S. Stiles, Color Science (Wiley New York, 1982).
49. J. P. Lewis, “Fast Template Matching,” Canadian Image Processing and Pattern Recognition Society, 120 (1995).
50. 臺灣監理法規檢索系統,車輛型式安全及品質一致性審驗作業要點。 https://www.mvdis.gov.tw/webMvdisLaw/LawContent.aspx?LawID=B0023012.
51. UNECE. Addendum 112: Regulation No. 113. https://www.unece.org/fileadmi n/DAM/trans/main/wp29/wp29regs/R113rev2_e.pdf.
52. Kraftfahrt-Bundesamt. StVZO 22A No. 23. https://www.kba.de/DE/Home/
home_node.html.
53. K. Rossmann, “Point spread-function, line spread-function, and modulation transfer function: tools for the study of imaging systems,” Radiology 93, 257-272 (1969).
54. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
指導教授 楊宗勳 孫慶成(Tsung-Hsun Yang Ching-Cherng Sun) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明