博碩士論文 105226046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:35.175.121.230
姓名 洪瑞廷(Jui-Ting Hung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基態耗損結構照明三倍頻顯微術
(Ground State Depletion Structured Illumination Third Harmonic Generation Microscopy)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-16以後開放)
摘要(中) 多光子顯微術由於激發過程是非線性,所以擁有良好的縱向及橫向解析度,且激發光波長較單光子顯微術長,因此樣本穿透深度也較深,其中倍頻訊號(如二倍頻及三倍頻)的激發過程中並無實際能階躍遷,滿足動量守恆,因此較不易產生光漂白及破壞樣本。
不同於螢光訊號,因為倍頻訊號屬於無實際能階躍遷,無法如螢光訊號般進行強度的調制,所以不適用螢光的超解析顯微術。1994年,S. W. Hell提出了基態耗損顯微術(Ground state depletion, GSD)這項技術,藉由降低基態電子數目,影響樣本的吸收,進而調制螢光的訊號強度。本論文利用倍頻訊號的一項特性:若樣本存在多光子吸收能階,將會增強倍頻訊號的強度,因此嘗試利用GSD來降低樣本的吸收,使倍頻的增益減弱,來達到調制倍頻訊號。
由於倍頻的激發需要極高的光強度,本論文將以二維點掃描顯微系統為架構來取得三倍頻影像,並導入耗損光(depletion light),使之與激發光重合產生激態耗損,因三倍頻會滿足光子動量的方向,將以順向方式架設收光系統,使用濾波片將激發光及耗損光濾除,再使用光電倍增管接收三倍頻訊號。本研究以血紅素、黑色素為樣本進行基態耗損的測試,系統以1064 nm的飛秒雷射作為激發光,根據樣本的吸收光譜,以綠光連續波(Continuous wave, CW)雷射作為耗損光。為能進一步產生具有週期結構的耗損光,耗損光經過空間光調制器(Spatial Light Modulator, SLM)產生繞射,使兩道+1與­1的繞射光在樣本的焦平面干涉,產生餘弦波的結構照明,如此將能以不同的耗損光強度產生週期性的三倍頻強度調制。
摘要(英) Due to nonlinear excitation, multi-photon microscopy could provide well performance at axial and lateral resolution. In addition, the wavelength of excitation light is longer than the wavelength of single-photon microscopy relatively. Hence, it has better penetration depth. Take harmonic generation for an instance, during the excitation process, there is no transition of real energy state. Complying with the conservation of momentum. Accordingly, cause less optical bleaching or damage to the interacted tissues.
Harmonic generation is different from fluorescence signal. There is no transition of real energy state. As a result, the super resolution microscopy of fluorescence is not
suitable for harmonic generation. Ground state depletion microscopy was published by S. W. Hell at 1994. By decreasing the number of electron of ground, affect the absorption of the sample. As a consequence, modulate the intensity of fluorescence. This essay apply a characteristic of harmonic generation: if there is real energy state of multi-photon absorption, it will enhance the intensity of harmonic generation. Therefore, we can decade the enhancement of harmonic generation by applying GSD. Finally, we can modulate the enhance the signal of harmonic generation.
Owing to the high intensity requirement of multi-photon. This essay will apply 2-D point scanning system to obtain THG image. Furthermore, involving the depletion light make the sample GSD。THG comply with the momentum of the insert photon. The system will set up as a forward system. THG will be detected by a photomultiplier tube, which is mounted with a UV filter.
This research consider melanin and hemoglobin as sample for GSD testing. Our system take 1064 nm femto-second laser as excitation laser. According to the absorption spectrum of sample, use 532 nm continuous wave laser as depletion light. In order to generate a structured illumination depletion light. Use Spatial Light Modulator (SLM) to diffract the light. Make use of the +1 and ­1 order diffraction light to interfere at the focal plane of the sample. Consequently, generate the sinusoidal structured illumination. In this way, we can modulate the THG at different intensity of depletion light.
關鍵字(中) ★ 基態耗損
★ 結構照明
★ 三倍頻
★ 顯微術
關鍵字(英)
論文目次 摘要…………………………………………………………………………………….i
Abstract………………………………………………………………………………..ii
目錄…………………………………………………………………………………...iv
圖索引…………………………………………………………………………....vi
第一章 緒論………………………………………..…………………………………1
1.1 研究背景………………………………….…………………………………1
1.1.1 光學顯微系統……………………………..…………………………1
1.1.2 超解析顯微術………………………………………………..………2
1.2 研究目的與動機…………………………………………………………….4
第二章 原理……………………………………………………………………..……6
2.1 三倍頻訊號……………………………………………………………….…6
2.2 基態耗損原理……………………………………………………………….8
2.3 結構照明顯微術…………………………………………….…………..…11
2.3.1 廣域結構照明顯微術………………………………………………11
2.3.2 掃描式結構照明顯微術………………………………………...….13
2.3.3 耗損光結合掃描式系統之結構照明顯微術………………………14
第三章 系統設計與建構………………………………………………………..…..19
3.1 掃描式三倍頻影像系統………………………………………………...…19
3.2 結構照明耗損光系統……………………………………………………...21
3.2.1 結構照明耗損光建構……………………………………………....21
3.2.2 SLM控制參數與結構照明結果檢測………………………………25
3.2.3 結構耗損光之結果分析……………………………………………27
第四章 實驗結果與分析……………………………………………………………33
4.1 有機半導體材料Ir(piq)2(acac)……………………….…………………....33
4.1.1 樣本備製……………………………………………………………33
4.1.2 三倍頻影像及強度調制量測……………………………..………..34
4.2 人體血紅素Hemoglobin…………………………………………………..37
4.2.1 樣本備製……………………………………………………………38
4.2.2 三倍頻影像及強度調制量測………………………………………39
4.3 黑色素Melanin…………………………………………………………….41
4.3.1 樣本備製……………………………………………………………42
4.3.2 三倍頻影像及強度調制量測……………………….……………43
第五章 結論…………………………………………………………………………46
參考文獻……………………………………………………………………………..47
圖索引
圖1-1 (a)繞射極限下PSF的強度分布;(b)相近可以解析的兩個點;(c)恰可解析
圖1-1的兩個點。…………………….…………………………………………….…2
圖1-2 STED系統架構:激發光與耗損光光路[9]……………………………….….3
圖1-3隨機光學重建顯微術取像過程與分子定位示意圖[14]……………………...3
圖1-4 (a)結構照明系統;(b)條紋照明樣本後所產生的莫瑞紋[15]………………..4
圖2-1 (a)玻璃縱向上三倍頻強度量測系統式意圖;(b) S-LAH64玻璃三倍頻強度
圖1-1變化,較弱的峰值訊號倍放大100倍以便呈現[23]……………………..….7
圖2-2 (a)三倍頻無實際能階轉換;(b)三倍頻有單光子的吸收能階;(c)三倍頻有
圖1-1雙光子的吸收能階;(d)三倍頻有三光子的吸收能階……………...………..8
圖2-3 Jablonski energy diagram [24]…………………………...…………….……….9
圖2-4 三個能階的在不同激發光下的電子數(黑線為基態、藍線為三重態、紅線
圖2-4為單重態)..……..………………………………………………….………….10
圖2-5 三倍頻有雙光子的吸收能階,且具有三重態T1…………………………...11
圖2-6 (a)條紋的強度分佈;(b)樣本的正空間;(c)廣域結構照明下的樣本;(d)廣
圖2-4域結構照明下收進CCD的影像;(e)條紋的頻率空間;(f)樣本的頻率空間;
圖2-4 (g)結構照明下被位移的頻率空間;(h)結構照明下CCD所取得之影像對應
圖2-4的頻率空間。…………………….…………………….………………….…..12
圖2-7 被解出來的三項未知數:(a) , (b) , (c);(a)和(c)為位移的高頻資訊。……13
圖2-8 (a)餘弦波強度分佈的耗損光;(b)耗損光強度變化與樣本上基態電子數變
圖2-4化。.……………………………………………………………………..…….15
圖3-1 掃描式三倍頻影像系統示意圖;L:透鏡;L1:焦長75 mm;L2:焦長
圖3-1 250 mm;L6:焦長100 mm;Obj:物鏡;F1:390 nm low-pass filter。…19
圖3-2 掃描式三倍頻影像系統實際架構圖…………………………………….….20
圖3-3 系統二維掃描的電控訊號,x(t)為慢軸訊號,y(t)為快軸訊號………..….21
表3-1 為三倍頻PSF的半高全寬; 為2道耗損光能產生的干涉干涉條紋週期
圖3-4 系統二維掃描; 為3P-OTF的截止頻率; 為干涉條紋的頻率。……….22
圖3-4 使用高斯光束,在薄螢光樣本產生干涉條紋………………………….…...23
圖3-5 結構照明耗損光系統示意圖。L:透鏡;S:擋板;P:偏振片……...….24
圖3-6 結構照明耗損光系統實際架構圖…………………………………………..25
圖3-7 SLM之繞射角與雷射光間距示意圖……………………………………...…25
圖3-8 耗損光干涉示意圖……………………………….………………………….26
圖3-9 螢光樣本上的干涉條紋,SLM使用的週期為4白8黑,scale bar:10 µm;
圖3-10 (a)條紋週期為0;(b)條紋週期為2π/3;(c)條紋週期為4π/3。………...28
圖3-10 原始干涉條紋強度變化……………………………………………..……..28
圖3-11 強度校正後的的干涉條紋強度變化…………………………………..…..29
表3-2 三種強度曲線的擬合資料…………………………………………………..30
圖3-12 螢光樣本上的干涉條紋,SLM使用的週期為6白12黑,scale bar:10
圖3-12 µm;(a)條紋週期為0;(b)條紋週期為2π/3;(c)條紋週期為4π/3。………30
圖3-13 強度校正後的的干涉條紋強度變化………………………………………31
表3-3 三種強度曲線的擬合資料…………………………………………………..32
圖4-1 Ir(piq)2(acac)吸收光譜與磷光光譜…………….…………………………….33
圖4-2 Ir(piq)2(acac)的白光顯微影像(a)和(b)為不同區域的影像;scale bar: 10 µm.34
圖4-3 Ir(piq)2(acac)結晶的白光顯微影像,scale bar:6.5 µm……………………35
圖4-4 有機材料在激發10秒內的強度變化………………………………………36
圖4-5 在不同強度的耗損光下,材料Ir(piq)2(acac)的三倍頻平均強度變化……36
圖4-6 材料Ir(piq)2(acac)在耗損光關閉後三倍頻的平均強度變化….…....……..36
圖4-7 帶氧與不帶氧血紅素吸收光譜[37] ………………………………………...38
圖4-8 聚合物小球的白光顯微影像影像,scale bar:10 µm……………………..39
圖4-9 聚合物小球的三倍頻影像;從最上層開始往下掃描,影像依序為(a)到(h),圖4-9 每張高度差500 nm,scale bar:10 µm……………………………………40
圖4-10 血紅素coated聚合物小球 wide-field影像,scale bar:10 µm…...……41
圖4-11 三倍頻影像(a)有血紅素鍍膜的小球;(b)原始小球,scale bar:10 µm…41
圖4-12 黑色素吸收光譜[42]…………………………………………...…………..42
圖4-13 白光影像 (a)未處理的黑色素;(a)小分子狀態的黑色素;(b)放置一段時
圖4-13間凝聚後的黑色素;scale bar:10 µm ………………..…………………..43
圖4-14 黑色素樣本一的三倍頻影像(a)激發光剛打開;(b)激發光照射5秒後;(c)
圖4-14 激發後的黑色素白光影像,scale bar:10 µm…………………..………..43
圖4-15 黑色素樣本三的三倍頻影像:(a)激發光剛打開;(b)激發5秒後;(c)激發
圖4-15 10秒後,scale bar:10 µm…………...…………………………………….44
圖4-16 黑色素三倍頻訊號在10秒內的強度變化………………………………...44
圖4-17 黑色素樣本三在耗損光下的三倍頻影像:(a)激發光剛打開;(b)激發5秒
圖4-17 後;(c)激發10秒後,scale bar:10 µm……………………………………45
圖4-18 黑色素在耗損下的三倍頻訊號在10秒內的強度變化……………..……45
參考文獻 [1] M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb and R. R. Anderson, “In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast.” Journal of Investigative Dermatology 104(6), 946-952 (1995).
[2] W. Denk, J. H. Strickler and W. W. Webb, “Two-photon laser scanning fluorescence microscopy.” Science 248(4951), 73-76 (1990).
[3] W. L. Peticolas, J. P. Goldsborough and K. E. Reickhoff, “Physical Review Letters.” 10(2), 43 (1963).
[4] M. W. Davidson and M. Abramowitz, “Optical microscopy.” Encyclopedia of imaging science and technology 2, 1106-1141 (2002).
[5] D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra.” Physical Review 136(4A) (1964).
[6] S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy.” Optics letters 19, 11 (1994).
[7] T. A. Klar, S. Jakobs, M. Dyba, A. Egner and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission.” PNAS 97(15), 8206-8210 (2000).
[8] S. W. Hell, “Far-field optical nanoscopy.” Science 316(5828), 1153-1158 (2007)
[9] K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis.” Nature 440(7086), 935-939 (2006).
[10] B. Hein, K. I. Willig and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell.” Proceedings of the National Academy of Sciences 105(38), 14271-14276 (2008).
[11] U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell and T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy.” Proceedings of the National Academy of Sciences 105(48), 18982-18987 (2008).
[12] M. J. Rust, M. Bates and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).” Nature methods 3, 793-795 (2006).
[13] B. Huang, W. Wang, M. Bates and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.” Science 319, 810-813 (2008).
[14] M. Bates, S. A. Jones and X. Zhuang, “ Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging.” Cold Spring Harbor Protocols (2013).
[15] R. Heintzmann, T. M. Jovin and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement.” JOSA A 19, 1599-1609 (2002).
[16] M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.” Journal of microscopy 198(2), 82-87 (2000).
[17] M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution.” Proceedings of the National Academy of Sciences 102(37), 13081-13086 (2005).
[18] W. R. Zipfel, R. M. Williams and Watt W Webb, “Nonlinear magic: multiphoton microscopy in the biosciences.” Nature Biotechnologyvolume 21, 1369-1377 (2003).
[19] C. H. Yeh, “Two-photon scanning structured illumination Microscopy.” National Central University (2016).
[20] C. H. Yeh, C. Z. Tan, C. H. Cheng, J.T. Hung and S. Y. Chen, “Improving resolution of second harmonic generation microscopy via scanning structured illumination.” Biomedical Optics Express 9(12), 6081-6090 (2018).
[21] R. W. Boyed, “Nonlinear optics.” Academic press. (2003).
[22] J. A. Squier, M. Müller, G. J. Brakenhoff and K. R. Wilson, “Third harmonic generation microscopy.” Optics Express 3(9), 315-324 (1998).
[23] G. Veres, S. Matsumoto, Y. Nabekawa and K. Midorikawa, “Enhancement of third-harmonic generationin absorbing media.” Applied physics letters 81(20), 3714-3716 (2002).
[24] https://www.olympus-lifescience.com/en/microscope-resource/primer/java/jablonski/jabintro/
[25] S. W. Hell and K. Matthias, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit.” Applied physics B 60, 5 (1995).
[26] J. W. Goodman, Introduction to Fourier Optics, third edtion (Robert & Company Publishers, Unitied States, 2005).
[27] R. Heintzmann, T. M. Jovin and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement.” JOSA A 19(8), 1599-1609 (2002).
[28] R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns.” Micron 34(6-7), 283-291 (2003).
[29] O. Svelto, Principles of Lasers, fifth edtion (Springer Science & Business Media, 1976).
[30] S. Torbjorn, “Pattern generator.” U.S. Patent 6, 747-783. (2004).
[31] D. Débarre, E. J. Botcherby, M. J. Booth and T. Wilson, “Adaptive optics for structured illumination microscopy.” Optics express 16(13), 9290-9305 (2008).
[32] https://www.researchgate.net/figure/UV-and-PL-spectra-of-piq-2-Ir-BPO-OH-in-CHCl-3_fig6_224405634
[33] H.H. Wu, “Modulation of Third Harmonic Generation Achieved through Ground State Depletion.” National Central University (2016).
[34] G. O. Clay, A. C. Millard, C. B. Schaffer, J. A. Au, P. S. Tsai, J. A. Squier and D. Kleinfeld, “Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin.” Journal of the Optical Society of America B 23(5), 932-950 (2006).
[35] I. Saytashev, R. Glenn, G. A. Murashova, S. Osseiran, D. Spence, C. L. Evans and M. Dantus, “Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive microscopy of stored blood.” Biomedical Optics Express 7(9), 3449-3460 (2016).
[36] R. D. Schaller, J. C. Johnson and R. J. Saykally, “Nonlinear Chemical Imaging Microscopy:  Near-Field Third Harmonic Generation Imaging of Human Red Blood Cells.” Analytical chemistry 72(21), 5361-5364 (2000).
[37] S. Prahl, “Optical absorption of hemoglobin.” Oregon Medical Laser Center, http://omlc.org/spectra/hemoglobin/index.html (1999).
[38] Olafson, B. Duane and W. A. Goddard, “Molecular description of dioxygen bonding in hemoglobin.” Proceedings of the National Academy of Sciences 74(4), 1315-1319 (1977).
[39] D. A. Chernoff, R. M. Hochstrasser and A. W. Steele, “Geminate recombination of O2 and hemoglobin.” Proceedings of the National Academy of Sciences 77(10), 5606-5610 (1980).
[40] H. Suna and N. Hua, “Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes.” Biophysical Chemistry 110, 297-308 (2004).
[41] J. B. Matthew, G. I. H. Hanania and F. R. N. Gurd, “Electrostatic effects in hemoglobin – hydrogen – ion equilibria in human deoxyhemoglobin and oxyhemoglobin-A.” Biochemistry 18, 1919-1928 (1979).
[42] A. Vogel, A. Dlugos, R. Nuffer and R. Birngruber, “Optical properties of human sclera, and their consequences for transscleral laser applications.” Lasers in surgery and medicine 11(4), 331-340 (1991).
[43] S. Y. Chen, S. U. Chen, H. Y. Wu, W. J. Lee, Y. H. Liao and C. K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy.” IEEE Journal of Selected Topics in Quantum Electronics 16(3), 478-492 (2010).
[44] S. Y. Chen, H. Y. Wu and C. K. Sun, “In vivo harmonic generation biopsy of human skin.” Journal of Biomedical Optics 14(6), 060505 (2009).
[45] C. C. Felix, J. S. Hyde and R. C. Sealy. “Photoreactions of melanin: A new transient species and evidence for triplet state involvement.” Biochemical and Biophysical Research Communications 88(2), 456-461 (1979).
[46] T. Y. Su, C. S. Liao, C. Y. Yang, G. Y. Zhuo, S. Y. Chen and S. W. Chu, “On the possible origin of bulk third harmonic generation in skin cells.” Applied Physics Letters 99(11), 113702 (2011).
[47] A. Arthur, “Acceleration and trapping of particles by radiation pressure.” Physical review letters 24(4), 156 (1970).
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2019-9-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明