博碩士論文 105226056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.90.45.27
姓名 吳國彰(Guo-Jhang Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 850nm垂直共振腔面射型雷射之鈍化層改善及光電特性分析
(Improvement of passivation layer and Characterization of 850 nm Vertically cavity surface-emitting lasers)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-9-26以後開放)
摘要(中) 本論文中,我們以AlGaAs磊晶片製做850nm VCSEL(垂直共振腔面射型雷射) 並透過下列兩種方法降低寄生電容值來改善VCSEL之頻寬特性。第一種方法:我們用 濕蝕刻和乾蝕刻將元件結構蝕刻成高台型結構,此製程方法稱為Isolation。藉由此方法 我們能降低元件表面之寄生電容。第二種方法:在晶片外部寄生電容上,我們分別以 單層複合膜、BCB及雙層複合膜三種介質作為鈍化層(Passivation Layer)來降低電極 產生的寄生電容值。
首先,Isolation在高台型(mesa-type)結構中對元件的閥值條件、電阻影響不 大,例如:在W/O Isolation下操作電阻分別為84.25Ω(雙層複合膜)和81.7Ω(BCB) ,在W/ Isolation下操作電阻分別為87.95Ω(雙層複合膜)和88.42Ω(BCB),但電容 值部分就有明顯的下降,如:在鈍化層為BCB,電容值由0.116 pF(W/O Isolation)降 至0.069 pF(W/ Isolation),由此可得Isolation能有效的降低元件的電容值。接著,鈍 化層的材料方面,目前大部分是以BCB及Polymer兩種低介電係數(low-k)材料為主, 原因為低介電係數材料能有效的降低元件外部的寄生電容值。Polymer的介電係數為 3.3,雖然元件的電容值能有效的下降,但Polymer的缺點為製程時材料表面容易產生龜 裂,使元件的特性變差。BCB的介電係數為2.65,雖然BCB的優點為有效的降低元件的 電容值,但BCB的缺點為金屬附著力差、製程複雜及成本高。為了解決BCB和Polymer 的缺點,我們選擇使用氮化矽(Si3N4)疊加氧化矽(SiO2)形成的複合膜 (Multilayer)改善製程中Polymer材料表面容易產生龜裂和BCB金屬附著力差、製程複 雜及成本高的缺點。
在W/ Isolation的元件結構中,分別以雙層複合膜、BCB作為鈍化層並比較其操 作電阻、電容值及頻寬,雖然雙層複合膜的操作電阻、電容值略低於BCB的值,且操 作頻寬也從9.6GHz(雙層複合膜)上升至9.9GHz(BCB),但複合膜的優點為金屬附 著力佳、製程流程簡單及成本較低。由於複合膜有相近於BCB的元件特性和改善BCB 的缺點,所以厚的複合膜能取代BCB成為較好的鈍化層材料。
摘要(英) In this thesis, we use AlGaAs epitaxial wafer to fabricate 10GHz 850nm Vertical Cavity Surface Emitting Laser and increase modulation bandwidth by reducing parasitic capacitance. Reducing parasitic capacitance by isolation and two kind of passivation layers. The passivation layer is Benzocyclobutene (BCB) and Multilayer.
First of all, Isolation reduces capacitance value in the same passivation layer. The capacitance value is reduced from 0.116 pF (W/O Isolation) to 0.069 pF (W/Isolation) in the BCB. The capacitance value is reduced from 0.145 pF (W/O Isolation) to 0.121 pF (W/Isolation) in the Multilayer×2.
On the other hand, the passivation layer reduce capacitance value in the W/ Isolation. The capacitance value is reduced from 0.161 pF (Multilayer×1) to 0.121 pF (Multilayer×2) in the W/ Isolation. The capacitance value is reduced from 0.121 pF (Multilayer×2) to 0.069 pF (BCB) in the W/ Isolation.
In the W/ Isolation, the modulation bandwidth is increase from 9.6 GHz (Multilayer×2) to 9.9 GHz (BCB).
Although the Multilayer×2 and BCB has the similar threshold condition and modulation bandwidth, the advantages of the Multilayer×2 are good metal adhesion, simple process flow and low cost. Since the Multilayer×2 has similar element characteristics to BCB and improves the disadvantage of BCB, a thick composite film can replace BCB as a better passivation layer material.
關鍵字(中) ★ 垂直共振腔面射型雷射
★ 鈍化層
關鍵字(英) ★ 850nm VCSEL
★ passivation
論文目次 摘要 ------------------------------------------------------------------------v
Abstract --------------------------------------------------------------------vi
致謝 ------------------------------------------------------------------------vii
目錄 ------------------------------------------------------------------------viii
圖目錄 ----------------------------------------------------------------------x
表目錄 ----------------------------------------------------------------------xii
第一章 序論 -----------------------------------------------------------------1
1-1 簡介 ---------------------------------------------------------------------1
1-2 AOC(Active Optical Cable )之應用 ----------------------------------------3
1-3 研究動機-----------------------------------------------------------------5
1-4 論文架構-----------------------------------------------------------------6
第二章 基本理論-------------------------------------------------------------7
2-1 發光原理-----------------------------------------------------------------7
2-1-1 能量激發(Pumping)-----------------------------------------------------8
2-1-2 DBR反射鏡 ------------------------------------------------------------9
2-1-3 雷射震盪條件---------------------------------------------------------10
2-2 水氧原理 ----------------------------------------------------------------11
2-3 頻寬(modulation response) ----------------------------------------------13 2-4 PECVD 沉積之複合膜(Multilayer) -----------------------------------------15
第三章 實驗------------------------------------------------------------------18
3-1 元件結構設計 ------------------------------------------------------------18
3-2 製程設備 ---------------------------------------------------------------20
3-2-1 沈積設備 -------------------------------------------------------------20
3-2-2 微影設備 -------------------------------------------------------------20
3-2-3 蝕刻設備 -------------------------------------------------------------22
3-2-4 量測設備 -------------------------------------------------------------22
3-2-5 其他------------------------------------------------------------------25
3-3 製程流程 ---------------------------------------------------------------26
第四章 實驗結果與討論------------------------------------------------------35
4-1 量測系統簡介 -----------------------------------------------------------35
4-1-1 I-V之量測-------------------------------------------------------------35
4-1-2 L-I之量測 ------------------------------------------------------------35
4-1-3 Spectrum之量測 -----------------------------------------------------36
4-1-4 C-V之量測 -----------------------------------------------------------37
4-1-5 Bandwidth之量測-----------------------------------------------------37
4-2 量測數據分析 -----------------------------------------------------------38
4-2-1 I-V之量測-------------------------------------------------------------38
4-2-2 L-I之量測 ------------------------------------------------------------39
4-2-3 Spectrum之量測 -----------------------------------------------------41
4-2-4 C-V之計算與量測-----------------------------------------------------42
4-2-5 Bandwith之量測------------------------------------------------------44
第五章 結論與未來展望------------------------------------------------------46
5-1 結論--------------------------------------------------------------------46
5-2 未來展望 ---------------------------------------------------------------47
參考文獻--------------------------------------------------------------------48
參考文獻 [1] 盧佳柔,“五大應用一步到位 VCSEL成通訊/測距幕後推手”, 新通訊元件雜誌, 新通訊2月號204期, 2018
[2] https://www.moneydj.com/KMDJ/wiki/WikiViewer.aspx?Title=VCSEL
[3] https://www.asus.com/tw/ROG-Republic-Of-Gamers/ROG-Spatha/
[4] 盧佳柔,“3D感測需求加溫 VCSEL商機水漲船高”, 新通訊元件雜誌, 新通訊 6 月號 208 期, 2018
[5] https://community.fs.com/blog/active-optical-cable-aoc-rising-star-of-telecommunications-datacom-transceiver-markets.html
[6] https://www.multicominc.com/training/technical-resources/copper-vs-fiber-which-to-choose/
[7] 葉子, “有源光纜AOC市場深度解析”, 壹讀, 2015
[8] 第三章 雷射二極體, PIDA,2 001
[9] 曲建仲,iPhone X臉部解鎖的關鍵元件,科學月刊 12/2017 第576期, 2017
[10] 盧廷昌,王興宗,“半導體雷射導論”, 五南出版社,台北市, 2008
[11] 崔博婷,“耦合共振腔結構中之量子點光學特性研究”, 國立中山大學,碩士論文, 2010
[12] 鄒志偉, “光纖通訊”, 五南出版社, 台北市, 2011
[13] Donald A. Neamen,“SEMICONDUCTOR PHYSICS AND DEVICES Basic Principles”, McGraw-Hill , Fourth Edition, 2012
[14] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., 1965.
[15] Kent D. Choquette, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull ,“Advances in Selective Wet Oxidation of AlGaAs Alloys ”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997
[16] Noriyuki OHNOKI, Nobuaki HATORI, Akimasa MIZUTANI, Fumio KOYAMA and Kenichi IGA, “GaInAs /AlGaInAs Semiconductor Lasers with AlAs Oxide Current Confinement Structure”, Jpn. J. Appl. Phys., 1997
[17] M. Ochiai et al., Appl. Phys. Lett., 68, 1898.
[18] Noriyuki OHNOKI, Toshikazu MUKAIHARA, Nobuaki HATORI, Akimasa MIZUTANI, Fumio KOYAMA and Kenichi IGA, “Proposal and Demonstration of AlAs-Oxide Confinement Structure for InP-Based Long Wavelength Lasers”, Jpn. J. Appl. Phys. , 1997
[19] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively oxidized Vertical-Cavity Lasers” Photon. Tech. Lett. 7, 1995.
[20] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent #5,262,360
[21] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J.Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versusAlAs layers,” Appl. Phys. Lett. 69, 1996.
[22] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., 1996.
[23] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement.” Appl. Phys. Lett., 1995
[24] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., 1995.
[25] 彭红玲, 韩 勤, 杨晓红, 牛智川 ,“1.3µm量子点垂直腔面发射激光器高频响应的优化设计 ”, 物理学报 , 2007
[26] Anders Larsson, Petter Westbergh, Johan Gustavsson, A ̊ sa Haglund and Benjamin Ko ̈gel, “High-speed VCSELs for short reach communication”, Semicond. Sci. Technol., 2010
[27] A N AL-Omari, I K AL-Kofahi and K L Lear, “Fabrication, performance and parasitic parameter extraction of 850 nm high-speed vertical-cavity lasers ”, Semicond. Sci. Technol., 2009
[28] W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann,“10-Gb/s Data Transmission Using BCB Passivated 1.55-?m InGaAlAs–InP VCSELs”, IEEE PHOTONICS TECHNOLOGY LETTERS, 2006
[29] Philip Moser ,“Energy-Efficient VCSELs for Optical Interconnects ”, Springer International Publishing, Switzerland, 2016
[30] Rainer Michalzik, “VCSELs :Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers ,”Springer-Verlag Berlin Heidelberg, 2013
[31] K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,”IEEE J. Quantum Electron., 1988.
[32] Y H Chang, Fang-I Lai, C Y Lu, H C Kuo, H C Yu, C P Sung, H P Yang and S C Wang, “High-speed (>10 Gbps) 850 nm oxide-confined vertical cavity surface emitting lasers (VCSELs) with a planar process and reduced parasitic capacitance “,Semicond. Sci. Technol., 2004
[33] PAULINA KOMAR1, PATRYCJA ŚPIEWAK, MARCIN GĘBSKI, JAMES A. LOTT, MICHAŁ WASIAK, “CURRENT DEPENDENCE OF RESISTANCES AND CAPACITANCES IN A VERTICAL-CAVITY SURFACE-EMITTING LASER”, SCIENTIFIC BULLETIN OF THE LODZ UNIVERSITY OF TECHNOLOGY: Physics, 2017
[34] Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance Characteristics and Parasitic Speed Limitations of High-Speed 850-nm VCSELs”, IEEE PHOTONICS TECHNOLOGY LETTERS, 2009
[35] Silvia Spiga, Dean Schoke, Alexander Andrejew, Gerhard Boehm, and Markus-Christian Amann,“Effect of Cavity Length, Strain, and Mesa Capacitance on 1.5µm VCSELs Performance,” IEEE,JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017
[36] H.K. Lee, Y.M. Song, Y.T. Lee, J.S. Yu, “Thermal analysis of asymmetric intracavity-contacted oxide-aperture VCSELs for efficient heat dissipation”, ScienceDirect, 2009
[37] WSTan,P AHouston, PJParbrook, GHill and RJAirey, “Comparison of different surface passivation dielectrics in AlGaN/GaN heterostructure field-effect transistors”, IOP, 2002
[38] Jung-Hun Oh, Woo-Suk Sul, Jin-Koo Rhee, and Sam-Dong Kim, “Influence of Silicon Nitride Passivation on DC and RF Characteristics of 0.1 ?m Pseudomorphic HEMTs ”, Journal of The Electrochemical Society, 2005?
[39] A. N. AL-Omari, K. L. Lear, “Polyimide-Planarized Vertical-Cavity Surface-Emitting Lasers With 17.0-GHz Bandwidth”, IEEE PHOTONICS TECHNOLOGY LETTERS, 2004
[40] Tatsuya Tanigawa, Toshikazu Onishi, Shuichi Nagai, and Tetsuzo Ueda,“12.5-Gbps Operation of 850-nm Vertical-Cavity Surface-Emitting Lasers With Reduced Parasitic Capacitance by BCB Planarization Technique ,”IEEE JOURNAL OF QUANTUM ELECTRONICS, 2006
[41] 李世平,“電漿化學氣相沉積技術成長超低應力之紫外光可透性氮化矽薄膜”, 國立交通大學, 碩士論文, 2010
[42] K. D. Mackenzie, B. Reelfs, M. W. DeVre, R. Westerman, and D. J. Johnson, "Characterization & Optimization of Low Stress PECVD Silicon Nitride for Production GaAs Manufacturing”, Compound Semi & Microtechnology, 2004
[43] C.L. Tan, S.J. Jang, Y.T. Lee,“Si3N4 / SiO2 Passivation Layer on InP for Optimization of the 1.55 μm MQW FP laser Performance ,”IEEE, 2009
[44] X. Hu, A. Koudymov, G. Simin, J. Yang, M. Asif Khan, A. Tarakji, M. S. Shur, and R. Gaska,“Si3N4 / AlGaN /GaN–metal–insulator–semiconductor heterostructure field–effect transistors”, APPLIED PHYSICS LETTERS , 2001
[45] SIMON FERRÉ, ALBA PEINADO, ENRIC GARCIA-CAUREL, VIRGINIE TRINITÉ, MATHIEU CARRAS, AND ROBSON FERREIRA, “Comparative study of SiO2, Si3N4 and TiO2 thin films as passivation layers for quantum cascade lasers ”, OPTICS EXPRESS, 2016
[46] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., 1997.
[47] C. C. Chen, S. J. Liaw, and Y. J. Yang, “Stable Single-Mode Operation of an 850-nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion”, IEEE PHOTONICS TECHNOLOGY LETTERS, 2001
[48] http://www.litrax.com.tw/upload/APA4401xy0001.pdf
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2018-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明